Steklov eigenvalues for the ∞-Laplacian

被引:0
|
作者
Garcia-Azorero, Jesus [1 ]
Manfredi, Juan J. [2 ]
Peral, Ireneo [1 ]
Rossi, Julio D. [3 ]
机构
[1] Univ Autonoma Madrid, Dept Matemat, E-28049 Madrid, Spain
[2] Univ Pittsburgh, Dept Math, Pittsburgh, PA 15260 USA
[3] CSIC, Madrid, Spain
关键词
Quasilinear elliptic equations; viscosity solutions; Neumann boundary conditions; eigenvalue;
D O I
暂无
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We study the Steklov eigenvalue problem for the infinity-Laplacian. To this end we consider the limit as p -> infinity of solutions of -Delta(p)u(p) = 0 in a domain Omega with vertical bar del u(p)vertical bar(p-2)partial derivative u(p)/partial derivative v = lambda vertical bar u vertical bar (p-2)u on partial derivative Omega. We obtain a limit problem that is satisfied in the viscosity sense and a geometric characterization of the second eigenvalue.
引用
收藏
页码:199 / 210
页数:12
相关论文
共 50 条
  • [41] Electromagnetic Steklov eigenvalues: approximation analysis
    Halla, Martin
    ESAIM-MATHEMATICAL MODELLING AND NUMERICAL ANALYSIS-MODELISATION MATHEMATIQUE ET ANALYSE NUMERIQUE, 2021, 55 (01): : 57 - 76
  • [42] Singular Perturbation of Simple Steklov Eigenvalues
    Gryshchuk, Serhii
    Lanza de Cristoforis, Massimo
    NUMERICAL ANALYSIS AND APPLIED MATHEMATICS (ICNAAM 2012), VOLS A AND B, 2012, 1479 : 700 - 703
  • [43] MAXIMIZATION OF THE STEKLOV EIGENVALUES WITH A DIAMETER CONSTRAINT
    Al Sayed, Abdelkader
    Bogosel, Beniamin
    Henrot, Antoine
    Nacry, Florent
    SIAM JOURNAL ON MATHEMATICAL ANALYSIS, 2021, 53 (01) : 710 - 729
  • [44] Extremal problems for Steklov eigenvalues on annuli
    Fan, Xu-Qian
    Tam, Luen-Fai
    Yu, Chengjie
    CALCULUS OF VARIATIONS AND PARTIAL DIFFERENTIAL EQUATIONS, 2015, 54 (01) : 1043 - 1059
  • [45] On the Laplacian eigenvalues of a graph and Laplacian energy
    Pirzada, S.
    Ganie, Hilal A.
    LINEAR ALGEBRA AND ITS APPLICATIONS, 2015, 486 : 454 - 468
  • [46] ON THE EXISTENCE AND STABILITY OF MODIFIED MAXWELL STEKLOV EIGENVALUES
    Halla, Martin
    SIAM JOURNAL ON MATHEMATICAL ANALYSIS, 2023, 55 (05) : 5445 - 5463
  • [47] Flexibility of Steklov eigenvalues via boundary homogenisation
    Mikhail Karpukhin
    Jean Lagacé
    Annales mathématiques du Québec, 2024, 48 : 175 - 186
  • [48] Large Steklov Eigenvalues Under Volume Constraints
    Girouard, Alexandre
    Polymerakis, Panagiotis
    JOURNAL OF GEOMETRIC ANALYSIS, 2024, 34 (10)
  • [49] Large Steklov eigenvalues via homogenisation on manifolds
    Alexandre Girouard
    Jean Lagacé
    Inventiones mathematicae, 2021, 226 : 1011 - 1056
  • [50] Tubes and Steklov Eigenvalues in Negatively Curved Manifolds
    Basmajian, Ara
    Brisson, Jade
    Hassannezhad, Asma
    Metras, Antoine
    INTERNATIONAL MATHEMATICS RESEARCH NOTICES, 2025, 2025 (03)