Steklov eigenvalues for the ∞-Laplacian

被引:0
|
作者
Garcia-Azorero, Jesus [1 ]
Manfredi, Juan J. [2 ]
Peral, Ireneo [1 ]
Rossi, Julio D. [3 ]
机构
[1] Univ Autonoma Madrid, Dept Matemat, E-28049 Madrid, Spain
[2] Univ Pittsburgh, Dept Math, Pittsburgh, PA 15260 USA
[3] CSIC, Madrid, Spain
关键词
Quasilinear elliptic equations; viscosity solutions; Neumann boundary conditions; eigenvalue;
D O I
暂无
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We study the Steklov eigenvalue problem for the infinity-Laplacian. To this end we consider the limit as p -> infinity of solutions of -Delta(p)u(p) = 0 in a domain Omega with vertical bar del u(p)vertical bar(p-2)partial derivative u(p)/partial derivative v = lambda vertical bar u vertical bar (p-2)u on partial derivative Omega. We obtain a limit problem that is satisfied in the viscosity sense and a geometric characterization of the second eigenvalue.
引用
收藏
页码:199 / 210
页数:12
相关论文
共 50 条