Bio-based production of C2-C6 platform chemicals

被引:288
作者
Jang, Yu-Sin [1 ]
Kim, Byoungjin [1 ]
Shin, Jae Ho [1 ]
Choi, Yong Jun [1 ]
Choi, Sol [1 ]
Song, Chan Woo [1 ]
Lee, Joungmin [1 ]
Park, Hye Gwon [1 ]
Lee, Sang Yup [1 ,2 ,3 ,4 ]
机构
[1] Korea Adv Inst Sci & Technol, Dept Chem & Biomol Engn,BK21 Program, Metab & Biomol Engn Natl Res Lab,Inst BioCentury, BioProc Engn Res Ctr,Ctr Syst & Synthet Biotechno, Taejon 305701, South Korea
[2] Korea Adv Inst Sci & Technol, Dept Bio & Brain Engn, Taejon 305701, South Korea
[3] Korea Adv Inst Sci & Technol, Dept Biol Sci, Taejon 305701, South Korea
[4] Korea Adv Inst Sci & Technol, Bioinformat Res Ctr, Taejon 305701, South Korea
基金
新加坡国家研究基金会;
关键词
biomass; building block chemical; platform chemical; polymer; metabolic engineering; systems metabolic engineering; GAMMA-AMINOBUTYRIC-ACID; BENZENE-FREE SYNTHESIS; ENHANCED BUTYRIC-ACID; ESCHERICHIA-COLI; SUCCINIC-ACID; CORYNEBACTERIUM-GLUTAMICUM; CLOSTRIDIUM-ACETOBUTYLICUM; SACCHAROMYCES-CEREVISIAE; MICROBIAL-PRODUCTION; BUTANOL PRODUCTION;
D O I
10.1002/bit.24599
中图分类号
Q81 [生物工程学(生物技术)]; Q93 [微生物学];
学科分类号
071005 ; 0836 ; 090102 ; 100705 ;
摘要
Platform chemicals composed of 26 carbons derived from fossil resources are used as important precursors for making a variety of chemicals and materials, including solvents, fuels, polymers, pharmaceuticals, perfumes, and foods. Due to concerns regarding our environment and the limited nature of fossil resources, however, increasing interest has focused on the development of sustainable technologies for producing these platform chemicals from renewable resources. The techniques and strategies for developing microbial strains for chemicals production have advanced rapidly, and it is becoming feasible to develop microbes for producing additional types of chemicals, including non-natural molecules. In this study, we review the current status of the bio-based production of major C2C6 platform chemicals, focusing on the microbial production of platform chemicals that have been used for the production of chemical intermediates, building block compounds, and polymers. Biotechnol. Bioeng. 2012; 109: 24372459. (c) 2012 Wiley Periodicals, Inc.
引用
收藏
页码:2437 / 2459
页数:23
相关论文
共 200 条
[1]   Genome Sequences of the High-Acetic Acid-Resistant Bacteria Gluconacetobacter europaeus LMG 18890T and G. europaeus LMG 18494 (Reference Strains), G. europaeus 5P3, and Gluconacetobacter oboediens 174Bp2 (Isolated from Vinegar) [J].
Andres-Barrao, Cristina ;
Falquet, Laurent ;
Calderon-Copete, Sandra P. ;
Descombes, Patrick ;
Perez, Ruben Ortega ;
Barja, Francois .
JOURNAL OF BACTERIOLOGY, 2011, 193 (10) :2670-2671
[2]   Development of recombinant Klebsiella pneumoniae ΔdhaT strain for the co-production of 3-hydroxypropionic acid and 1,3-propanediol from glycerol [J].
Ashok, Somasundar ;
Raj, Subramanian Mohan ;
Rathnasingh, Chelladurai ;
Park, Sunghoon .
APPLIED MICROBIOLOGY AND BIOTECHNOLOGY, 2011, 90 (04) :1253-1265
[3]   Metabolic engineering of Escherichia coli for 1-butanol production [J].
Atsumi, Shota ;
Cann, Anthony F. ;
Connor, Michael R. ;
Shen, Claire R. ;
Smith, Kevin M. ;
Brynildsen, Mark P. ;
Chou, Katherine J. Y. ;
Hanai, Taizo ;
Liao, James C. .
METABOLIC ENGINEERING, 2008, 10 (06) :305-311
[4]   Non-fermentative pathways for synthesis of branched-chain higher alcohols as biofuels [J].
Atsumi, Shota ;
Hanai, Taizo ;
Liao, James C. .
NATURE, 2008, 451 (7174) :86-U13
[5]   Directed Evolution of Methanococcus jannaschii Citramalate Synthase for Biosynthesis of 1-Propanol and 1-Butanol by Escherichia coli [J].
Atsumi, Shota ;
Liao, James C. .
APPLIED AND ENVIRONMENTAL MICROBIOLOGY, 2008, 74 (24) :7802-7808
[6]   METABOLISM OF BENZENE BY BACTERIA - PURIFICATION AND SOME PROPERTIES OF ENZYME CIS-1,2-DIHYDROXYCYCLOHEXA-3,5-DIENE (NICOTINAMIDE ADENINE-DINUCLEOTIDE) OXIDOREDUCTASE (CIS-BENZENE GLYCOL DEHYDROGENASE) [J].
AXCELL, BC ;
GEARY, PJ .
BIOCHEMICAL JOURNAL, 1973, 136 (04) :927-934
[7]   Whole-genome analyses reveal genetic instability of Acetobacter pasteurianus [J].
Azuma, Yoshinao ;
Hosoyama, Akira ;
Matsutani, Minenosuke ;
Furuya, Naoko ;
Horikawa, Hiroshi ;
Harada, Takeshi ;
Hirakawa, Hideki ;
Kuhara, Satoru ;
Matsushita, Kazunobu ;
Fujita, Nobuyuki ;
Shirai, Mutsunori .
NUCLEIC ACIDS RESEARCH, 2009, 37 (17) :5768-5783
[8]   Metabolic engineering for improving anthranilate synthesis from glucose in Escherichia coli [J].
Balderas-Hernandez, Victor E. ;
Sabido-Ramos, Andrea ;
Silva, Patricia ;
Cabrera-Valladares, Natividad ;
Hernandez-Chavez, Georgina ;
Baez-Viveros, Jose L. ;
Martinez, Alfredo ;
Bolivar, Francisco ;
Gosset, Guillermo .
MICROBIAL CELL FACTORIES, 2009, 8
[9]   Redundancy in putrescine catabolism in solvent tolerant Pseudomonas putida S12 [J].
Bandounas, Luaine ;
Ballerstedt, Hendrik ;
de Winde, Johannes H. ;
Ruijssenaars, Harald J. .
JOURNAL OF BIOTECHNOLOGY, 2011, 154 (01) :1-10
[10]   OPTIMIZATION OF L-MALIC ACID PRODUCTION BY ASPERGILLUS-FLAVUS IN A STIRRED FERMENTER [J].
BATTAT, E ;
PELEG, Y ;
BERCOVITZ, A ;
ROKEM, JS ;
GOLDBERG, I .
BIOTECHNOLOGY AND BIOENGINEERING, 1991, 37 (11) :1108-1116