Role of metal and dielectric nanoparticles in the performance enhancement of silicon solar cells

被引:18
作者
Das, Sonali [1 ]
Kundu, Avra [1 ]
Saha, Hiranmay [1 ]
Datta, Swapan K. [1 ]
机构
[1] Bengal Engn & Sci Univ, Ctr Excellence Green Energy & Sensor Syst, Howrah 711103, W Bengal, India
关键词
silver nanoparticle; dielectric nanoparticle; silicon solar cell; plasmonics; CRYSTALLINE SILICON; OPTICAL-ABSORPTION; PLASMON RESONANCE; TRANSMISSION; SCATTERING; SHAPE; SIZE;
D O I
10.1080/09500340.2012.710347
中图分类号
O43 [光学];
学科分类号
070207 ; 0803 ;
摘要
The suitability of using spherical metal and dielectric nanoparticles on the top of a silicon solar cell has been investigated. An enhancement index factor (EIF) for each wavelength of light and an averaged EIF for the AM 1.5 solar spectrum, weighted by the photon flux, has been introduced. These factors estimate the effect of the nanoparticles in improving the performance of the solar cells, considering the absorption loss due to joule heating, fraction of radiation scattered into the substrate and the front scattered radiation pattern. A systematic comparison between silver and dielectric nanoparticles (silica, silicon nitride, titanium dioxide) shows that titanium dioxide and silicon nitride nano particles of sizes >= 100 nm exhibit larger enhancements compared to that of silver nanoparticles of similar sizes. Further, as the dielectric constant of the dielectric nanoparticles increases, the optimal particle size corresponding to maximal enhancement shifts towards lower value. At optimal particle sizes, the enhancement is 1.5-2 times greater than that due to silver nanoparticles.
引用
收藏
页码:1219 / 1231
页数:13
相关论文
共 39 条
[1]   Nanoparticle-enhanced thin film solar cells: Metallic or dielectric nanoparticles? [J].
Akimov, Yu A. ;
Koh, W. S. ;
Sian, S. Y. ;
Ren, S. .
APPLIED PHYSICS LETTERS, 2010, 96 (07)
[2]   Enhancement of optical absorption in thin-film solar cells through the excitation of higher-order nanoparticle plasmon modes [J].
Akimov, Yu. A. ;
Koh, W. S. ;
Ostrikov, K. .
OPTICS EXPRESS, 2009, 17 (12) :10195-10205
[3]  
Atwater HA, 2010, NAT MATER, V9, P205, DOI [10.1038/nmat2629, 10.1038/NMAT2629]
[4]  
Beck FJ, 2011, NANOTECHNOLOGY IN AUSTRALIA: SHOWCASE OF EARLY CAREER RESEARCH, P41
[5]   Tunable light trapping for solar cells using localized surface plasmons [J].
Beck, F. J. ;
Polman, A. ;
Catchpole, K. R. .
JOURNAL OF APPLIED PHYSICS, 2009, 105 (11)
[6]   Nano-crystalline silicon solar cell architecture with absorption at the classical 4n2 limit [J].
Biswas, Rana ;
Xu, Chun .
OPTICS EXPRESS, 2011, 19 (14) :A664-A672
[7]  
Bohren C. F., 1998, ABSORPTION SCATTERIN, DOI 10.1002/9783527618156
[8]  
Catchpole KR, 2008, OPT EXPRESS, V16, P21793, DOI 10.1364/OE.16.021793
[9]   Scattering of light into silicon by spherical and hemispherical silver nanoparticles [J].
Centeno, Anthony ;
Breeze, Jonathan ;
Ahmed, Badar ;
Reehal, Hari ;
Alford, Neil .
OPTICS LETTERS, 2010, 35 (01) :76-78
[10]   Broadband Enhancement in Thin-Film Amorphous Silicon Solar Cells Enabled by Nucleated Silver Nanoparticles [J].
Chen, Xi ;
Jia, Baohua ;
Saha, Jhantu K. ;
Cai, Boyuan ;
Stokes, Nicholas ;
Qiao, Qi ;
Wang, Yongqian ;
Shi, Zhengrong ;
Gu, Min .
NANO LETTERS, 2012, 12 (05) :2187-2192