Equivariant cohomology distinguishes toric manifolds

被引:26
作者
Masuda, Mikiya [1 ]
机构
[1] Osaka City Univ, Dept Math, Sumiyoshi Ku, Osaka 5588585, Japan
关键词
equivariant cohomology; toric manifold; quasitoric manifold; small cover;
D O I
10.1016/j.aim.2008.04.002
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
The equivariant cohomology of a space with a group action is not only a ring but also an algebra over the cohomology ring of the classifying space of the acting group. We prove that toric manifolds (i.e. compact smooth toric varieties) are isomorphic as varieties if and only if their equivariant cohomology algebras are weakly isomorphic. We also prove that quasitoric manifolds, which can be thought of as a topological counterpart to toric manifolds, are equivariantly homeomorphic if and only if their equivariant cohomology algebras are isomorphic. (C) 2008 Elsevier Inc. All rights reserved.
引用
收藏
页码:2005 / 2012
页数:8
相关论文
共 50 条
[31]   Equivariant cohomology and localization for Lie algebroids [J].
Bruzzo, U. ;
Cirio, L. ;
Rossi, P. ;
Rubtsov, V. .
FUNCTIONAL ANALYSIS AND ITS APPLICATIONS, 2009, 43 (01) :18-29
[32]   Local Anomalies and Local Equivariant Cohomology [J].
Roberto Ferreiro Pérez .
Communications in Mathematical Physics, 2009, 286 :445-458
[33]   Schubert calculus and equivariant cohomology of grassmannians [J].
Laksov, Dan .
ADVANCES IN MATHEMATICS, 2008, 217 (04) :1869-1888
[34]   Integral equivariant cohomology of affine Grassmannians [J].
Anderson, David .
CANADIAN MATHEMATICAL BULLETIN-BULLETIN CANADIEN DE MATHEMATIQUES, 2024, 67 (03) :727-741
[35]   Equivariant intersection cohomology of the circle actions [J].
Royo Prieto, Jose Ignacio ;
Saralegi-Aranguren, Martintxo E. .
REVISTA DE LA REAL ACADEMIA DE CIENCIAS EXACTAS FISICAS Y NATURALES SERIE A-MATEMATICAS, 2014, 108 (01) :49-62
[36]   On equivariant Hom-Leibniz cohomology [J].
Ripan Saha .
Afrika Matematika, 2021, 32 :1685-1696
[37]   On the cohomology and their torsion of real toric objects [J].
Choi, Suyoung ;
Park, Hanchul .
FORUM MATHEMATICUM, 2017, 29 (03) :543-553
[38]   Equivariant intersection cohomology of the circle actions [J].
José Ignacio Royo Prieto ;
Martintxo E. Saralegi-Aranguren .
Revista de la Real Academia de Ciencias Exactas, Fisicas y Naturales. Serie A. Matematicas, 2014, 108 :49-62
[39]   The equivariant cohomology of weighted flag orbifolds [J].
Haniya Azam ;
Shaheen Nazir ;
Muhammad Imran Qureshi .
Mathematische Zeitschrift, 2020, 294 :881-900
[40]   The equivariant cohomology rings of Peterson varieties [J].
Fukukawa, Yukiko ;
Harada, Megumi ;
Masuda, Mikiya .
JOURNAL OF THE MATHEMATICAL SOCIETY OF JAPAN, 2015, 67 (03) :1147-1159