Volatility estimation and jump detection for drift-diffusion processes

被引:14
作者
Laurent, Sebastien [1 ,2 ]
Shi, Shuping [3 ]
机构
[1] Aix Marseille Univ, Aix Marseille Sch Econ, CNRS, Marseille, France
[2] Aix Marseille Grad Sch Management IAE, EHESS, Marseille, France
[3] Macquarie Univ, Dept Econ, N Ryde, NSW, Australia
基金
澳大利亚研究理事会;
关键词
Diffusion process; Nonzero drift; Finite sample theory; Volatility estimation; Jumps; ORDER-STATISTICS; MICROSTRUCTURE NOISE; SPECULATIVE BUBBLES; STOCK MARKETS; MODELS; RETURNS; PRICES; EXUBERANCE; COMPONENTS; REGRESSION;
D O I
10.1016/j.jeconom.2019.12.004
中图分类号
F [经济];
学科分类号
02 ;
摘要
The logarithmic prices of financial assets are conventionally assumed to follow a drift-diffusion process. While the drift term is typically ignored in the infill asymptotic theory and applications, the presence of temporary nonzero drifts is an undeniable fact. The finite sample theory for integrated variance estimators and extensive simulations provided in this paper reveal that the drift component has a nonnegligible impact on the estimation accuracy of volatility, which leads to a dramatic power loss for a class of jump identification procedures. We propose an alternative construction of volatility estimators and observe significant improvement in the estimation accuracy in the presence of nonnegligible drift. The analytical formulas of the finite sample bias of the realized variance, bipower variation, and their modified versions take simple and intuitive forms. The new jump tests, which are constructed from the modified volatility estimators, show satisfactory performance. As an illustration, we apply the new volatility estimators and jump tests, along with their original versions, to 21 years of 5-minute log returns of the NASDAQ stock price index. (C) 2019 Elsevier B.V. All rights reserved.
引用
收藏
页码:259 / 290
页数:32
相关论文
共 50 条
[21]   Conservativeness of diffusion processes with drift [J].
Kuwae, K .
PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 2004, 132 (09) :2743-2751
[22]   ROBUST ESTIMATION OF MULTIVARIATE JUMP-DIFFUSION PROCESSES VIA DYNAMIC PROGRAMMING [J].
Torzhkov, Andrey ;
Sharma, Puneet ;
Chakraborty, Amit .
PROCEEDINGS OF THE 2010 WINTER SIMULATION CONFERENCE, 2010, :1123-1132
[23]   Detecting jumps from Levy jump diffusion processes [J].
Lee, Suzanne S. ;
Hannig, Jan .
JOURNAL OF FINANCIAL ECONOMICS, 2010, 96 (02) :271-290
[24]   Latent jump diffusion factor estimation for commodity futures [J].
Dempster, M. A. H. ;
Medova, Elena ;
Tang, Ke .
JOURNAL OF COMMODITY MARKETS, 2018, 9 :35-54
[25]   Nonparametric Two-Step Estimation of Drift Function in the Jump-Diffusion Model with Noisy Data [J].
Ye Xuguo ;
Zhao Yanyong ;
Lin Jinguan ;
Long Weifang .
JOURNAL OF SYSTEMS SCIENCE & COMPLEXITY, 2022, 35 (06) :2398-2429
[26]   Nonparametric Two-Step Estimation of Drift Function in the Jump-Diffusion Model with Noisy Data [J].
Xuguo Ye ;
Yanyong Zhao ;
Jinguan Lin ;
Weifang Long .
Journal of Systems Science and Complexity, 2022, 35 :2398-2429
[27]   A two-stage realized volatility approach to estimation of diffusion processes with discrete data [J].
Phillips, Peter C. B. ;
Yu, Jun .
JOURNAL OF ECONOMETRICS, 2009, 150 (02) :139-150
[28]   Efficient estimation of drift parameters in stochastic volatility models [J].
Gloter, Arnaud .
FINANCE AND STOCHASTICS, 2007, 11 (04) :495-519
[29]   Efficient estimation of drift parameters in stochastic volatility models [J].
Arnaud Gloter .
Finance and Stochastics, 2007, 11 :495-519
[30]   Penalized nonparametric drift estimation for a multidimensional diffusion process [J].
Schmisser, Emeline .
STATISTICS, 2013, 47 (01) :61-84