Volatility estimation and jump detection for drift-diffusion processes

被引:14
作者
Laurent, Sebastien [1 ,2 ]
Shi, Shuping [3 ]
机构
[1] Aix Marseille Univ, Aix Marseille Sch Econ, CNRS, Marseille, France
[2] Aix Marseille Grad Sch Management IAE, EHESS, Marseille, France
[3] Macquarie Univ, Dept Econ, N Ryde, NSW, Australia
基金
澳大利亚研究理事会;
关键词
Diffusion process; Nonzero drift; Finite sample theory; Volatility estimation; Jumps; ORDER-STATISTICS; MICROSTRUCTURE NOISE; SPECULATIVE BUBBLES; STOCK MARKETS; MODELS; RETURNS; PRICES; EXUBERANCE; COMPONENTS; REGRESSION;
D O I
10.1016/j.jeconom.2019.12.004
中图分类号
F [经济];
学科分类号
02 ;
摘要
The logarithmic prices of financial assets are conventionally assumed to follow a drift-diffusion process. While the drift term is typically ignored in the infill asymptotic theory and applications, the presence of temporary nonzero drifts is an undeniable fact. The finite sample theory for integrated variance estimators and extensive simulations provided in this paper reveal that the drift component has a nonnegligible impact on the estimation accuracy of volatility, which leads to a dramatic power loss for a class of jump identification procedures. We propose an alternative construction of volatility estimators and observe significant improvement in the estimation accuracy in the presence of nonnegligible drift. The analytical formulas of the finite sample bias of the realized variance, bipower variation, and their modified versions take simple and intuitive forms. The new jump tests, which are constructed from the modified volatility estimators, show satisfactory performance. As an illustration, we apply the new volatility estimators and jump tests, along with their original versions, to 21 years of 5-minute log returns of the NASDAQ stock price index. (C) 2019 Elsevier B.V. All rights reserved.
引用
收藏
页码:259 / 290
页数:32
相关论文
共 50 条
  • [11] Maximum likelihood estimation for the drift parameter in diffusion processes
    Wei, Chao
    Shu, Huisheng
    STOCHASTICS-AN INTERNATIONAL JOURNAL OF PROBABILITY AND STOCHASTIC REPORTS, 2016, 88 (05): : 699 - 710
  • [12] Maximum likelihood estimation of stock volatility using jump-diffusion models
    Chekenya, Nixon S.
    COGENT ECONOMICS & FINANCE, 2019, 7 (01):
  • [13] Nonparametric estimation of volatility function in the jump-diffusion model with noisy data
    Ye, Xu-Guo
    Zhao, Yan-Yong
    Zhang, Kong-Sheng
    JOURNAL OF NONPARAMETRIC STATISTICS, 2020, 32 (03) : 587 - 616
  • [14] Realized Laplace transforms for estimation of jump diffusive volatility models
    Todorov, Viktor
    Tauchen, George
    Grynkiv, Iaryna
    JOURNAL OF ECONOMETRICS, 2011, 164 (02) : 367 - 381
  • [15] Identifying the underlying components of high-frequency data: Pure vs jump diffusion processes
    Hizmeri, Rodrigo
    Izzeldin, Marwan
    Urga, Giovanni
    JOURNAL OF EMPIRICAL FINANCE, 2025, 81
  • [16] Optimal iterative threshold-kernel estimation of jump diffusion processes
    Figueroa-Lopez, Jose E.
    Li, Cheng
    Nisen, Jeffrey
    STATISTICAL INFERENCE FOR STOCHASTIC PROCESSES, 2020, 23 (03) : 517 - 552
  • [17] Optimal iterative threshold-kernel estimation of jump diffusion processes
    José E. Figueroa-López
    Cheng Li
    Jeffrey Nisen
    Statistical Inference for Stochastic Processes, 2020, 23 : 517 - 552
  • [18] Augmented Drift-Diffusion Transport for the Simulation of Advanced SiGe HBTs
    Mueller, M.
    Schroeter, M.
    Jungemann, C.
    Weimer, C.
    2021 IEEE BICMOS AND COMPOUND SEMICONDUCTOR INTEGRATED CIRCUITS AND TECHNOLOGY SYMPOSIUM (BCICTS), 2021,
  • [19] A two-step estimation of diffusion processes using noisy observations
    Ye, Xu-Guo
    Lin, Jin-Guan
    Zhao, Yan-Yong
    JOURNAL OF NONPARAMETRIC STATISTICS, 2018, 30 (01) : 145 - 181
  • [20] Least squares volatility change point estimation for partially observed diffusion processes
    De Gregorio, Alessandro
    Iacus, Stefano M.
    COMMUNICATIONS IN STATISTICS-THEORY AND METHODS, 2008, 37 (15) : 2342 - 2357