Volatility estimation and jump detection for drift-diffusion processes

被引:15
作者
Laurent, Sebastien [1 ,2 ]
Shi, Shuping [3 ]
机构
[1] Aix Marseille Univ, Aix Marseille Sch Econ, CNRS, Marseille, France
[2] Aix Marseille Grad Sch Management IAE, EHESS, Marseille, France
[3] Macquarie Univ, Dept Econ, N Ryde, NSW, Australia
基金
澳大利亚研究理事会;
关键词
Diffusion process; Nonzero drift; Finite sample theory; Volatility estimation; Jumps; ORDER-STATISTICS; MICROSTRUCTURE NOISE; SPECULATIVE BUBBLES; STOCK MARKETS; MODELS; RETURNS; PRICES; EXUBERANCE; COMPONENTS; REGRESSION;
D O I
10.1016/j.jeconom.2019.12.004
中图分类号
F [经济];
学科分类号
02 ;
摘要
The logarithmic prices of financial assets are conventionally assumed to follow a drift-diffusion process. While the drift term is typically ignored in the infill asymptotic theory and applications, the presence of temporary nonzero drifts is an undeniable fact. The finite sample theory for integrated variance estimators and extensive simulations provided in this paper reveal that the drift component has a nonnegligible impact on the estimation accuracy of volatility, which leads to a dramatic power loss for a class of jump identification procedures. We propose an alternative construction of volatility estimators and observe significant improvement in the estimation accuracy in the presence of nonnegligible drift. The analytical formulas of the finite sample bias of the realized variance, bipower variation, and their modified versions take simple and intuitive forms. The new jump tests, which are constructed from the modified volatility estimators, show satisfactory performance. As an illustration, we apply the new volatility estimators and jump tests, along with their original versions, to 21 years of 5-minute log returns of the NASDAQ stock price index. (C) 2019 Elsevier B.V. All rights reserved.
引用
收藏
页码:259 / 290
页数:32
相关论文
共 50 条
[1]   Joint estimation for volatility and drift parameters of ergodic jump diffusion processes via contrast function [J].
Amorino, Chiara ;
Gloter, Arnaud .
STATISTICAL INFERENCE FOR STOCHASTIC PROCESSES, 2021, 24 (01) :61-148
[2]   Joint estimation for volatility and drift parameters of ergodic jump diffusion processes via contrast function [J].
Chiara Amorino ;
Arnaud Gloter .
Statistical Inference for Stochastic Processes, 2021, 24 :61-148
[3]   Reversible jump MCMC for nonparametric drift estimation for diffusion processes [J].
van der Meulen, Frank ;
Schauer, Moritz ;
van Zanten, Harry .
COMPUTATIONAL STATISTICS & DATA ANALYSIS, 2014, 71 :615-632
[4]   Real-time estimation scheme for the spot cross volatility of jump diffusion processes [J].
Ogawa, Shigeyoshi ;
Ngo, Hoang-Long .
MATHEMATICS AND COMPUTERS IN SIMULATION, 2010, 80 (09) :1962-1976
[5]   REMARKS ON DRIFT ESTIMATION FOR DIFFUSION PROCESSES [J].
Pokern, Yvo ;
Stuart, Andrew M. ;
Vanden-Eijnden, Eric .
MULTISCALE MODELING & SIMULATION, 2009, 8 (01) :69-95
[6]   Robust estimation of intraweek periodicity in volatility and jump detection [J].
Boudt, Kris ;
Croux, Christophe ;
Laurent, Sebastien .
JOURNAL OF EMPIRICAL FINANCE, 2011, 18 (02) :353-367
[7]   Local M-estimation for jump-diffusion processes [J].
Wang, Yunyan ;
Zhang, Lixin ;
Tang, Mingtian .
STATISTICS & PROBABILITY LETTERS, 2012, 82 (07) :1273-1284
[8]   Uniformly asymptotic normality of estimation of the drift function for diffusion processes [J].
Yang, Shanchao ;
Lan, Qi ;
Xu, Xueyan ;
Liang, Zhu .
JOURNAL OF STATISTICAL PLANNING AND INFERENCE, 2025, 239
[9]   Volatility Estimation and Jump Testing via Realized Information Variation [J].
Liu, Weiyi ;
Wang, Mingjin .
JOURNAL OF TIME SERIES ANALYSIS, 2019, 40 (05) :753-787
[10]   Robust Volatility Estimation with and Without the Drift Parameter [J].
Shaik, Muneer ;
Maheswaran, S. .
JOURNAL OF QUANTITATIVE ECONOMICS, 2019, 17 (01) :57-91