Subcritical crack growth in CVISiCf/SiC composites at elevated temperatures:: Dynamic crack growth model

被引:22
作者
Henager, CH
Hoagland, RG
机构
[1] Pacific NW Natl Lab, Mat Sci P815, Richland, WA 99352 USA
[2] Los Alamos Natl Lab, Los Alamos, NM 87545 USA
关键词
computer simulation; ceramics; -; structural; composites; mechanical properties - creep; high temperature;
D O I
10.1016/S1359-6454(01)00277-4
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
A dynamic crack-growth model has been developed to predict slow crack growth in ceramic composites containing nonlinear, creeping fibers in an elastic matrix. Mechanics for frictional bridging and nonlinear fiber-creep equations are used to compute crack extension dynamically. Discrete, two-dimensional fiber bridges are employed, which allows separate bridge "clocks", to compute slow crack-growth rates for composites containing Nicalon-CG and Hi-Nicalon fibers. Predictions for activation energies, time-temperature exponents, crack lengths, and crack-velocity data for composites in bending at 1173 K to 1473 K in inert environments are in good agreement with experimental data. In addition, calculated creep strains in the bridges agree with experimental damage-zone strains. The implications of multiple-matrix cracking are discussed. (C) 2001 Acta Materialia Inc. Published by Elsevier Science Ltd. All rights reserved.
引用
收藏
页码:3739 / 3753
页数:15
相关论文
共 50 条
[21]   EFFECTS OF THE PARTICLE DISTRIBUTION ON FATIGUE CRACK-GROWTH IN PARTICULATE SIC/6061 ALUMINUM-ALLOY COMPOSITES [J].
KUMAI, S ;
YOSHIDA, K ;
HIGO, Y ;
NUNOMURA, S .
INTERNATIONAL JOURNAL OF FATIGUE, 1992, 14 (02) :105-112
[22]   FATIGUE CRACK GROWTH BEHAVIORS AT ELEVATED TEMPERATURE IN MOLYBDENUM AND TZM ALLOY [J].
Miyashita, Yukio ;
Ameno, Hiroaki ;
Mutoh, Yoshihau ;
Nagata, Kosoku .
PROCEEDINGS OF THE 7TH INTERNATIONAL CONFERENCE ON MECHANICS AND MATERIALS IN DESIGN (M2D2017), 2017, :517-518
[23]   In situ measurement of fatigue crack growth rates in a silicon carbide ceramic at elevated temperatures using a DC potential system [J].
Chen, D ;
Gilbert, CJ ;
Ritchie, RO .
JOURNAL OF TESTING AND EVALUATION, 2000, 28 (04) :236-241
[24]   XFEM SIMULATION OF FATIGUE CRACK GROWTH IN ALUMINUM ZIRCONIA REINFORCED COMPOSITES [J].
Rostami, Rahman Bajmalu ;
Schmauder, Siegfried .
INTERNATIONAL JOURNAL FOR MULTISCALE COMPUTATIONAL ENGINEERING, 2019, 17 (05) :469-481
[25]   DESCRIPTION OF SUBCRITICAL CRACK GROWTH PHENOMENON IN ALUMINA-ZIRCONIA PARTICULATE COMPOSITES USING PARAMETERS DETERMINED BY THE CONSTANT STRESS RATE TEST [J].
Dudek, Agnieszka ;
Lach, Radoslaw ;
Wojteczko, Kamil ;
Pedzich, Zbigniew .
BRITTLE MATRIX COMPOSITES 11, 2015, :83-90
[26]   A new creep-fatigue crack growth model and a correlation of the creep-fatigue crack growth rate with unified constraint parameter [J].
Lu, Rong-Sheng ;
Tan, Jian-Ping ;
Yang, Jie ;
Wang, Ji ;
Shlyannikov, Valery ;
Wang, Run-Zi ;
Zhang, Xian-Cheng ;
Tu, Shan -Tung .
INTERNATIONAL JOURNAL OF FATIGUE, 2023, 166
[27]   Fatigue Crack Growth Life Assessment for Ni-Based Superalloy- Alloy-247LC at Elevated Temperatures [J].
Ma, Young Wha ;
Song, Jeon Young ;
Gu, Ji Ho ;
Yoon, Kee Bong .
TRANSACTIONS OF THE KOREAN SOCIETY OF MECHANICAL ENGINEERS A, 2024, 48 (10) :697-703
[28]   Cohesive model application to micro-crack nucleation and growth [J].
Galkiewicz, Jaroslaw .
21ST EUROPEAN CONFERENCE ON FRACTURE, (ECF21), 2016, 2 :1619-1626
[29]   Rate dependent cohesive zone model for fatigue crack growth [J].
Zhang, Qinbo ;
Xu, Zihan ;
Tao, Weiming .
INTERNATIONAL JOURNAL OF MECHANICAL SCIENCES, 2024, 271
[30]   Cohesive zone model and slow crack growth in ceramic polycrystals [J].
M. Romero de la Osa ;
R. Estevez ;
C. Olagnon ;
J. Chevalier ;
L. Vignoud ;
C. Tallaron .
International Journal of Fracture, 2009, 158 :157-167