The protein disulphide-isomerase family:: unravelling a string of folds

被引:429
作者
Ferrari, DM [1 ]
Söling, HD [1 ]
机构
[1] Max Planck Inst Biophys Chem, Dept Neurobiol, D-37077 Gottingen, Germany
关键词
calsequestrin; ERp28; ERp57; ERp72; p5; PDI-D; PDIp; PDIR; thioredoxin;
D O I
10.1042/0264-6021:3390001
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
The mammalian protein disulphide-isomerase (PDI) family encompasses several highly divergent proteins that are involved in the processing and maturation of secretory proteins in the endoplasmic reticulum. These proteins are characterized by the presence of one or more domains of roughly 95-110 amino acids related to the cytoplasmic protein thioredoxin. All but the PDI-D subfamily are composed entirely of repeats of such domains, with at least one domain containing and one domain lacking a redox-active -Cys-Xaa-Xaa-Cys- tetrapeptide. In addition to their known roles as redox catalysts and isomerases, the last few years have revealed additional functions of the PDI proteins, including peptide binding, cell adhesion and perhaps chaperone activities. Attention is now turning to the non-redox-active domains of the PDIs, which may play an important role in all of the known activities of these proteins. Thus the presence of both redox-active and -inactive domains within these proteins portends a complexity of functions differentially accommodated by the various family members.
引用
收藏
页码:1 / 10
页数:10
相关论文
共 175 条
[1]   A new Escherichia coli gene, dsbG, encodes a periplasmic protein involved in disulphide bond formation, required for recycling DsbA/DsbB and DsbC redox proteins [J].
Andersen, CL ;
MattheyDupraz, A ;
Missiakas, D ;
Raina, S .
MOLECULAR MICROBIOLOGY, 1997, 26 (01) :121-132
[2]   Interaction of calreticulin with protein disulfide isomerase [J].
Baksh, S ;
Burns, K ;
Andrin, C ;
Michalak, M .
JOURNAL OF BIOLOGICAL CHEMISTRY, 1995, 270 (52) :31338-31344
[3]   IDENTIFICATION OF A PROTEIN REQUIRED FOR DISULFIDE BOND FORMATION INVIVO [J].
BARDWELL, JCA ;
MCGOVERN, K ;
BECKWITH, J .
CELL, 1991, 67 (03) :581-589
[4]   BUILDING BRIDGES - DISULFIDE BOND FORMATION IN THE CELL [J].
BARDWELL, JCA .
MOLECULAR MICROBIOLOGY, 1994, 14 (02) :199-205
[5]   MOLECULAR-CLONING AND COMPLETE AMINO-ACID-SEQUENCE OF FORM-I PHOSPHOINOSITIDE-SPECIFIC PHOSPHOLIPASE-C [J].
BENNETT, CF ;
BALCAREK, JM ;
VARRICHIO, A ;
CROOKE, ST .
NATURE, 1988, 334 (6179) :268-270
[6]  
BERGMAN LW, 1979, J BIOL CHEM, V254, P8869
[7]   TISSUE DISTRIBUTION AND MOLECULAR HETEROGENEITY OF BOVINE THIOL - PROTEIN-DISULFIDE OXIDOREDUCTASE (DISULFIDE INTERCHANGE ENZYME) [J].
BJELLAND, S .
COMPARATIVE BIOCHEMISTRY AND PHYSIOLOGY B-BIOCHEMISTRY & MOLECULAR BIOLOGY, 1987, 87 (04) :907-914
[8]   CDNA CLONING AND BACULOVIRUS EXPRESSION OF THE HUMAN LIVER ENDOPLASMIC-RETICULUM P58 - CHARACTERIZATION AS A PROTEIN DISULFIDE-ISOMERASE ISOFORM, BUT NOT AS A PROTEASE OR A CARNITINE ACYLTRANSFERASE [J].
BOURDI, M ;
DEMADY, D ;
MARTIN, JL ;
JABBOUR, SK ;
MARTIN, BM ;
GEORGE, JW ;
POHL, LR .
ARCHIVES OF BIOCHEMISTRY AND BIOPHYSICS, 1995, 323 (02) :397-403
[9]   ER-associated and proteasome-mediated protein degradation: How two topologically restricted events came together [J].
Brodsky, JL ;
McCracken, AA .
TRENDS IN CELL BIOLOGY, 1997, 7 (04) :151-156
[10]  
CAI H, 1994, J BIOL CHEM, V269, P24550