EXTINCTION OF WEAK SOLUTIONS OF DOUBLY NONLINEAR NAVIER-STOKES EQUATIONS

被引:0
作者
Merker, Jochen [1 ]
机构
[1] Univ Rostock, Inst Math, Ulmenstr 69,Haus 3, D-18057 Rostock, Germany
关键词
Navier-Stokes equations; doubly nonlinear evolution equations; extinction;
D O I
暂无
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this article we discus the doubly nonlinear incompressible Navier-Stokes equations partial derivative b(u)/partial derivative t + div(b(u) circle times u) = -d pi + div(a(del(sym)u) + f, div(u) = 0, where u models the velocity vector field of a homogeneous incompressible non-Newtonian fluid whose momentum b (u) depends nonlinearly on u. Particularly, under certain regularity assumptions it is shown that u becomes extinct in finite time for sufficiently small initial values u (0), if a (del(sym)u) := (1 + vertical bar del(sym)u vertical bar(p-2)del(sym)u and b (u) := vertical bar u vertical bar(m-2)u with 1 < p < m < infinity.
引用
收藏
页码:223 / 234
页数:12
相关论文
共 26 条
[1]  
ALT HW, 1983, MATH Z, V183, P311
[2]   Stopping a Viscous Fluid by a Feedback Dissipative Field: I. The Stationary Stokes Problem [J].
Antontsev, S. N. ;
Diaz, J. I. ;
de Oliveira, H. B. .
JOURNAL OF MATHEMATICAL FLUID MECHANICS, 2004, 6 (04) :439-461
[3]   The Navier-Stokes problem modified by an absorption term [J].
Antontsev, S. N. ;
de Oliveira, H. B. .
APPLICABLE ANALYSIS, 2010, 89 (12) :1805-1825
[4]  
Antontsev S. N., 2007, P CMNE CILAMCE C POR
[5]  
Antontsev S. N., 2002, PROG NONLINEAR DIFFE, V48
[6]  
Antontsev S.N., 2004, Rend. Mat. Acc. Lincei s., V9, P257
[7]  
Antontsev SN, 2005, PROG NONLIN, V61, P1
[9]   On the differentiability of very weak solutions with right-hand side data integrable with respect to the distance to the boundary [J].
Diaz, J. I. ;
Rakotoson, J. M. .
JOURNAL OF FUNCTIONAL ANALYSIS, 2009, 257 (03) :807-831
[10]   IMPLICIT DEGENERATE EVOLUTION-EQUATIONS AND APPLICATIONS [J].
DIBENEDETTO, E ;
SHOWALTER, RE .
SIAM JOURNAL ON MATHEMATICAL ANALYSIS, 1981, 12 (05) :731-751