Nontrivial solutions for nonlinear Schrodinger-Choquard equations with critical exponents

被引:7
作者
Luo, Huxiao [1 ]
机构
[1] Zhejiang Normal Univ, Dept Math, Jinhua 321004, Zhejiang, Peoples R China
基金
中国国家自然科学基金;
关键词
Variational methods; Nonlinear Schrodinger-Choquard equations; Lower and upper critical exponents; Hardy-Littlewood-Sobolev inequality; EXISTENCE;
D O I
10.1016/j.aml.2020.106422
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We study the nonlinear Schrodinger-Choquard equation -Delta u + u = (I-alpha*vertical bar u vertical bar(P)) vertical bar u vertical bar(p-2)u + vertical bar u vertical bar(q-2)u, x epsilon R-N, where N epsilon N, 0 < alpha < N, I-alpha denotes Riesz potential. When p = N+alpha/N or p = N+alpha/N-2, we get nontrivial solutions under some restrictions on N, q and alpha respectively. N+alpha/N and N+alpha/N-2 are lower and upper critical exponents in the sense of the Hardy-Littlewood-Sobolev inequality. This article extends some results of related literatures. (C) 2020 Elsevier Ltd. All rights reserved.
引用
收藏
页数:7
相关论文
共 50 条
[41]   Spiraling solutions of nonlinear Schrodinger equations [J].
Agudelo, Oscar ;
Kuebler, Joel ;
Weth, Tobias .
PROCEEDINGS OF THE ROYAL SOCIETY OF EDINBURGH SECTION A-MATHEMATICS, 2022, 152 (03) :592-625
[42]   Quasilinear elliptic equations with Hardy terms and Hardy-Sobolev critical exponents: nontrivial solutions [J].
Chen, Guanwei .
BOUNDARY VALUE PROBLEMS, 2015,
[43]   Decay and scattering in energy space for the solution of weakly coupled Schrodinger-Choquard and Hartree-Fock equations [J].
Tarulli, M. ;
Venkov, G. .
JOURNAL OF EVOLUTION EQUATIONS, 2021, 21 (02) :1149-1178
[44]   Ground state solutions for fractional Schrodinger-Choquard-Kirchhoff type equations with critical growth [J].
Huang, Ling ;
Wang, Li ;
Feng, Shenghao .
COMPLEX VARIABLES AND ELLIPTIC EQUATIONS, 2022, 67 (07) :1624-1638
[45]   Nonlinear Choquard equations: Doubly critical case [J].
Seok, Jinmyoung .
APPLIED MATHEMATICS LETTERS, 2018, 76 :148-156
[46]   Normalized solutions for a class of nonlinear Choquard equations [J].
Bartsch, Thomas ;
Liu, Yanyan ;
Liu, Zhaoli .
PARTIAL DIFFERENTIAL EQUATIONS AND APPLICATIONS, 2020, 1 (05)
[47]   On nonlocal Choquard equations with Hardy-Littlewood-Sobolev critical exponents [J].
Gao, Fashun ;
Yang, Minbo .
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2017, 448 (02) :1006-1041
[48]   Normalized solutions for nonlinear Choquard equations with general nonlocal term [J].
Ao, Y. ;
Zhao, X. ;
Zou, W. .
JOURNAL OF FIXED POINT THEORY AND APPLICATIONS, 2023, 25 (01)
[49]   Normalized solutions for the Choquard equations with critical nonlinearities [J].
Gao, Qian ;
He, Xiaoming .
ADVANCES IN NONLINEAR ANALYSIS, 2024, 13 (01)
[50]   MULTIPLE NODAL SOLUTIONS OF NONLINEAR CHOQUARD EQUATIONS [J].
Huang, Zhihua ;
Yang, Jianfu ;
Yu, Weilin .
ELECTRONIC JOURNAL OF DIFFERENTIAL EQUATIONS, 2017,