Nontrivial solutions for nonlinear Schrodinger-Choquard equations with critical exponents

被引:7
作者
Luo, Huxiao [1 ]
机构
[1] Zhejiang Normal Univ, Dept Math, Jinhua 321004, Zhejiang, Peoples R China
基金
中国国家自然科学基金;
关键词
Variational methods; Nonlinear Schrodinger-Choquard equations; Lower and upper critical exponents; Hardy-Littlewood-Sobolev inequality; EXISTENCE;
D O I
10.1016/j.aml.2020.106422
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We study the nonlinear Schrodinger-Choquard equation -Delta u + u = (I-alpha*vertical bar u vertical bar(P)) vertical bar u vertical bar(p-2)u + vertical bar u vertical bar(q-2)u, x epsilon R-N, where N epsilon N, 0 < alpha < N, I-alpha denotes Riesz potential. When p = N+alpha/N or p = N+alpha/N-2, we get nontrivial solutions under some restrictions on N, q and alpha respectively. N+alpha/N and N+alpha/N-2 are lower and upper critical exponents in the sense of the Hardy-Littlewood-Sobolev inequality. This article extends some results of related literatures. (C) 2020 Elsevier Ltd. All rights reserved.
引用
收藏
页数:7
相关论文
共 50 条
  • [21] Ground state solutions for fractional Schrodinger equations with critical exponents
    Guo, Zhenyu
    Yan, Xueqian
    PROCEEDINGS OF THE INDIAN ACADEMY OF SCIENCES-MATHEMATICAL SCIENCES, 2022, 132 (02):
  • [22] Multiple solutions of p-fractional Schrodinger-Choquard-Kirchhoff equations with Hardy-Littlewood-Sobolev critical exponents
    Lin, Xiaolu
    Zheng, Shenzhou
    Feng, Zhaosheng
    ADVANCED NONLINEAR STUDIES, 2023, 23 (01)
  • [23] EXISTENCE AND NONEXISTENCE OF NONTRIVIAL SOLUTIONS FOR CHOQUARD TYPE EQUATIONS
    Wang, Tao
    ELECTRONIC JOURNAL OF DIFFERENTIAL EQUATIONS, 2016,
  • [24] Stability of standing waves for the fractional Schrodinger-Choquard equation
    Feng, Binhua
    Zhang, Honghong
    COMPUTERS & MATHEMATICS WITH APPLICATIONS, 2018, 75 (07) : 2499 - 2507
  • [25] Existence of solutions for a class of nonlinear Choquard equations with critical growth
    Ao, Yong
    APPLICABLE ANALYSIS, 2021, 100 (03) : 465 - 481
  • [26] NONTRIVIAL SOLUTIONS FOR SEMILINEAR SCHRODINGER EQUATIONS
    Liu Fang
    Yang Jianfu
    ACTA MATHEMATICA SCIENTIA, 2009, 29 (05) : 1405 - 1420
  • [27] Existence of nontrivial solutions for fractional Schrodinger equations with critical or supercritical growth
    Li, Quanqing
    Teng, Kaimin
    Wu, Xian
    Wang, Wenbo
    MATHEMATICAL METHODS IN THE APPLIED SCIENCES, 2019, 42 (05) : 1480 - 1487
  • [28] On nontrivial solutions of nonlinear Schrodinger equations with sign-changing potential
    Chen, Wei
    Wu, Yue
    Jhang, Seongtae
    ADVANCES IN DIFFERENCE EQUATIONS, 2021, 2021 (01)
  • [29] Multiplicity of normalized solutions for nonlinear Choquard equations
    Long, Chun-Fei
    Deng, Chonghao
    Li, Gui-Dong
    Tang, Chun-Lei
    ADVANCED NONLINEAR STUDIES, 2025,
  • [30] GROUND STATES FOR CHOQUARD EQUATIONS WITH DOUBLY CRITICAL EXPONENTS
    Li, Xinfu
    Ma, Shiwang
    ROCKY MOUNTAIN JOURNAL OF MATHEMATICS, 2019, 49 (01) : 153 - 170