Nontrivial solutions for nonlinear Schrodinger-Choquard equations with critical exponents

被引:7
|
作者
Luo, Huxiao [1 ]
机构
[1] Zhejiang Normal Univ, Dept Math, Jinhua 321004, Zhejiang, Peoples R China
基金
中国国家自然科学基金;
关键词
Variational methods; Nonlinear Schrodinger-Choquard equations; Lower and upper critical exponents; Hardy-Littlewood-Sobolev inequality; EXISTENCE;
D O I
10.1016/j.aml.2020.106422
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We study the nonlinear Schrodinger-Choquard equation -Delta u + u = (I-alpha*vertical bar u vertical bar(P)) vertical bar u vertical bar(p-2)u + vertical bar u vertical bar(q-2)u, x epsilon R-N, where N epsilon N, 0 < alpha < N, I-alpha denotes Riesz potential. When p = N+alpha/N or p = N+alpha/N-2, we get nontrivial solutions under some restrictions on N, q and alpha respectively. N+alpha/N and N+alpha/N-2 are lower and upper critical exponents in the sense of the Hardy-Littlewood-Sobolev inequality. This article extends some results of related literatures. (C) 2020 Elsevier Ltd. All rights reserved.
引用
收藏
页数:7
相关论文
共 50 条
  • [1] Ground state solutions for nonlinear Choquard equations with doubly critical exponents
    Lei, Chun-Yu
    Zhang, Binlin
    APPLIED MATHEMATICS LETTERS, 2022, 125
  • [2] Planar Schrodinger-Choquard equations with potentials vanishing at infinity: The critical case
    Shen, Liejun
    Radulescu, Vicentiu D.
    Yang, Minbo
    JOURNAL OF DIFFERENTIAL EQUATIONS, 2022, 329 : 206 - 254
  • [3] Concentration of solutions for a fractional relativistic Schrodinger-Choquard equation with critical growth*
    Wang, Li
    Wang, Jun
    Zhong, Qiaocheng
    Cheng, Kun
    NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2023, 230
  • [4] Infinitely Many Solutions for Schrodinger-Choquard Equation with Critical Exponential Growth in RN
    Song, Hongxue
    Chen, Caisheng
    JOURNAL OF DYNAMICAL AND CONTROL SYSTEMS, 2022, 28 (04) : 951 - 970
  • [6] NONLINEAR CHOQUARD EQUATIONS WITH HARDY-LITTLEWOOD-SOBOLEV CRITICAL EXPONENTS
    Luo, Xiaorong
    Mao, Anmin
    Sang, Yanbin
    COMMUNICATIONS ON PURE AND APPLIED ANALYSIS, 2021, 20 (04) : 1319 - 1345
  • [7] EXISTENCE OF INFINITELY MANY SOLUTIONS FOR DEGENERATE KIRCHHOFF-TYPE SCHRODINGER-CHOQUARD EQUATIONS
    Liang, Sihua
    Radulescu, Vicentiu D.
    ELECTRONIC JOURNAL OF DIFFERENTIAL EQUATIONS, 2017,
  • [8] Dynamics of blow-up solutions for the Schrodinger-Choquard equation
    Shi, Cunqin
    Liu, Kun
    BOUNDARY VALUE PROBLEMS, 2018,
  • [9] On existence and concentration behavior of positive ground state solutions for a class of fractional Schrodinger-Choquard equations
    Gao, Zu
    Tang, Xianhua
    Chen, Sitong
    ZEITSCHRIFT FUR ANGEWANDTE MATHEMATIK UND PHYSIK, 2018, 69 (05):
  • [10] Solitary waves for Schrodinger-Choquard equation
    Kostadinov, Boyan
    Tarulli, Mirko
    Venkov, George
    PROCEEDINGS OF THE 44TH INTERNATIONAL CONFERENCE "APPLICATIONS OF MATHEMATICS IN ENGINEERING AND ECONOMICS", 2018, 2048