Hot-press synthesized polyethylene oxide based proton conducting nanocomposite polymer electrolyte dispersed with SiO2 nanoparticles

被引:90
作者
Pandey, G. P. [1 ,2 ]
Hashmi, S. A. [1 ]
Agrawal, R. C. [2 ]
机构
[1] Univ Delhi, Dept Phys & Astrophys, Delhi 110007, India
[2] Pt Ravishankar Shukla Univ, Sch Studies Phys, Solid State Ion Res Lab, Raipur 492010, Madhya Pradesh, India
关键词
solvent-free/dry polymer electrolyte; hot-press (extrusion) technique; nanocomposite; polyethylene oxide;
D O I
10.1016/j.ssi.2008.04.006
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Ion transport studies on polyethylene oxide (PEO) based nanocomposite polymer electrolyte (NCPE) membranes (PEO: NH4HSO4) dispersed with nanosized SiO2 particle in varying wt.(%) have been reported. NCPE films have been cast by a novel hot-press (extrusion) technique. Scanning electron microscopy (SEM), X-ray diffraction (XRD), differential scanning calorimetry (DSC), Fourier transform infra-red (FTIR) spectroscopy, ionic transport number (t(ion)) and electrical conductivity (sigma) studies have been carried out on hot-press films and the results have been compared with NCPE films prepared by the standard solution cast technique. As a consequence of dispersion of a fractional amount of nanosized SiO2 filler particles into the polymer-salt complex (PEO: NH4HSO4) host matrix, an enhancement of approximately an order of magnitude in the room temperature conductivity resulted. NCPE membranes with SiO2 content: 5 wt.% (Solution cast) and 15 wt.% (hot-press) exhibited optimum room temperature conductivity (sigma) values similar to 2.5 x 10(-4) S cm(-1) and similar to 1.4 x 10(-4) S cm(-1), respectively. Two maxima appeared in the SiO2 concentration dependent conductivity plot for hot-pressed NCPE films which are discussed in the light of an existing two percolation threshold model. (C) 2008 Elsevier B.V. All rights reserved.
引用
收藏
页码:543 / 549
页数:7
相关论文
共 40 条
  • [1] Superionic solids: composite electrolyte phase - an overview
    Agrawal, RC
    Gupta, RK
    [J]. JOURNAL OF MATERIALS SCIENCE, 1999, 34 (06) : 1131 - 1162
  • [2] PEO-carbon composite lithium polymer electrolyte
    Appetecchi, GB
    Passerini, S
    [J]. ELECTROCHIMICA ACTA, 2000, 45 (13) : 2139 - 2145
  • [3] Nanostructured materials for advanced energy conversion and storage devices
    Aricò, AS
    Bruce, P
    Scrosati, B
    Tarascon, JM
    Van Schalkwijk, W
    [J]. NATURE MATERIALS, 2005, 4 (05) : 366 - 377
  • [4] AWALENDRA K, IN PRESS
  • [5] Bruce P. G., 1995, SOLID STATE ELECTROC
  • [6] DISPERSED IONIC CONDUCTORS AND PERCOLATION THEORY
    BUNDE, A
    DIETERICH, W
    ROMAN, E
    [J]. PHYSICAL REVIEW LETTERS, 1985, 55 (01) : 5 - 8
  • [7] Composite polymer electrolyte: the role of filler grain size
    Capiglia, C
    Yang, J
    Imanishi, N
    Hirano, A
    Takeda, Y
    Yamamoto, O
    [J]. SOLID STATE IONICS, 2002, 154 : 7 - 14
  • [8] TRANSIENT IONIC CURRENT MEASUREMENT OF IONIC MOBILITIES IN A FEW PROTON CONDUCTORS
    CHANDRA, S
    TOLPADI, SK
    HASHMI, SA
    [J]. SOLID STATE IONICS, 1988, 28 : 651 - 655
  • [9] Effects of SiC fillers on the electrical and mechanical properties of (PEO)(16)LiClO4 electrolytes
    Choi, BK
    Shin, KH
    [J]. SOLID STATE IONICS, 1996, 86-8 : 303 - 306
  • [10] Nanocomposite polymer electrolytes for lithium batteries
    Croce, F
    Appetecchi, GB
    Persi, L
    Scrosati, B
    [J]. NATURE, 1998, 394 (6692) : 456 - 458