C*-bialgebra defined by the direct sum of Cuntz algebras

被引:11
作者
Kawamura, Katsunori [1 ]
机构
[1] Ritsumeikan Univ, Col Sci & Engn, Shiga 5258577, Japan
关键词
C*-bialgebra; Cuntz algebra; comodule-algebra;
D O I
10.1016/j.jalgebra.2008.01.037
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Let O-* denote the C*-algebra defined by the direct sum of Cuntz algebras {O-n: 1 <= n < infinity} where we write O-1 as C for convenience. We introduce a non-degenerate *-homomorphism Delta(phi) from O-* to O-* circle times O-* which satisfies the coassociativity, and a *-homomorphism epsilon from O-* to C such that (epsilon circle times id) o Delta(phi) congruent to id congruent to (id circle times epsilon) o Delta(phi). Furthermore we show the following: (i) For the smallest unitization (O) over tilde (*) of O-*, there exists a unital extension ((Delta) over cap (phi) , (epsilon) over tilde) of the pair (Delta(phi), epsilon) on (O) over tilde (*) such that ((O) over tilde (*), ($) over cap (phi)) is a unital bialgebra with the unital counit (epsilon) over tilde (ii) The pair (O-*, Delta(phi)) satisfies the cancellation law. (iii) There exists a unital *-homomorphism Gamma(phi) from to the multiplier algebra M(O-infinity circle times O-*) of O-infinity circle times O-* such that (Gamma(phi) circle times id) o Gamma(phi) = (id circle times Delta(phi)) o Gamma(phi). (iv) There is no antipode for (O) over tilde (*). (v) There exists a unique Haar state on (O) over tilde (*). (vi) For a certain one-parameter bialgebra automorphism group of (O) over tilde (*), there exists a KMS state on (O) over tilde (*). (c) 2008 Elsevier Inc. All rights reserved
引用
收藏
页码:3935 / 3959
页数:25
相关论文
共 24 条
  • [1] [Anonymous], 1995, SYMETRIES QUANTIQUES
  • [2] [Anonymous], 2006, ENCYCL MATH SCI
  • [3] BAAJ S, 1993, ANN SCI ECOLE NORM S, V26, P425
  • [4] Blackadar B., 1998, K THEORY OPERATOR AL
  • [5] Bratteli O., 1981, TEXTS MONOGRAPHS PHY
  • [6] Quantum group actions on the Cuntz algebra
    Carcy, AL
    Paolucci, A
    Zhang, RB
    [J]. ANNALES HENRI POINCARE, 2000, 1 (06): : 1097 - 1122
  • [7] SIMPLE CSTAR-ALGEBRAS GENERATED BY ISOMETRIES
    CUNTZ, J
    [J]. COMMUNICATIONS IN MATHEMATICAL PHYSICS, 1977, 57 (02) : 173 - 185
  • [8] DUALS OF COMPACT LIE-GROUPS REALIZED IN THE CUNTZ ALGEBRAS AND THEIR ACTIONS ON C-STAR-ALGEBRAS
    DOPLICHER, S
    ROBERTS, JE
    [J]. JOURNAL OF FUNCTIONAL ANALYSIS, 1987, 74 (01) : 96 - 120
  • [9] Drinfeld V.G., 1987, P INT C MATH BERK 19, V1, P798
  • [10] Enock M., 1992, Kac Algebras and Duality of Locally Compact Groups