Structural disorder within paramyxovirus nucleoproteins and phosphoproteins

被引:58
作者
Habchi, Johnny
Longhi, Sonia [1 ]
机构
[1] CNRS, UMR 6098, F-13288 Marseille 09, France
关键词
MEASLES-VIRUS NUCLEOPROTEIN; C-TERMINAL DOMAIN; VESICULAR-STOMATITIS-VIRUS; INTRINSICALLY UNSTRUCTURED PROTEINS; MOLECULAR RECOGNITION FEATURES; NUCLEOCAPSID-LIKE STRUCTURES; RESIDUAL DIPOLAR COUPLINGS; NATIVELY UNFOLDED PROTEINS; CELLULAR STRESS-RESPONSE; CRYSTAL-STRUCTURE;
D O I
10.1039/c1mb05204g
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
This review focuses on the experimental data showing the abundance of structural disorder within the nucleoprotein (N) and phosphoprotein (P) from three paramyxoviruses, namely Nipah (NiV), Hendra (HeV) and measles (MeV) viruses. We provide a detailed description of the molecular mechanisms governing the disorder-to-order transition of the intrinsically disordered C-terminal domains (N-TAIL) of their N proteins upon binding to the C-terminal X domain (XD) of the homologous P proteins. We also show that a significant flexibility persists within N-TAIL-XD complexes, which therefore provide illustrative examples of "fuzziness''. The functional implications of structural disorder are discussed in light of the ability of disordered regions to establish a complex molecular partnership, thereby leading to a variety of biological effects. Taking into account the promiscuity that typifies disordered regions, we propose that the main functional advantage of the abundance of disorder within viruses would reside in pleiotropy and genetic compaction, where a single gene would encode a single (regulatory) protein product able to establish multiple interactions via its disordered regions, and hence to exert multiple concomitant biological effects.
引用
收藏
页码:69 / 81
页数:13
相关论文
共 50 条
  • [31] Local structural disorder in the organic molecular crystals
    Lu, Y
    Wang, SC
    Zheng, QT
    Liu, W
    Li, FH
    CHEMICAL JOURNAL OF CHINESE UNIVERSITIES-CHINESE, 1997, 18 (12): : 1978 - 1981
  • [32] Arrestins: structural disorder creates rich functionality
    Gurevich, Vsevolod V.
    Gurevich, Eugenia V.
    Uversky, Vladimir N.
    PROTEIN & CELL, 2018, 9 (12) : 986 - 1003
  • [33] The functional diversity of structural disorder in plant proteins
    Covarrubias, Alejandra A.
    Romero-Perez, Paulette S.
    Cuevas-Velazquez, Cesar L.
    Rendon-Luna, David F.
    ARCHIVES OF BIOCHEMISTRY AND BIOPHYSICS, 2020, 680
  • [34] STRUCTURAL BIOLOGY Protein dynamics from disorder
    Tolman, Joel R.
    NATURE, 2009, 459 (7250) : 1063 - 1064
  • [35] Structural changes within the alkaline earth uranyl phosphites
    Villa, Eric M.
    Juan Diwu
    Alekseev, Evgeny V.
    Depmeier, Wulf
    Albrecht-Schmitt, Thomas E.
    DALTON TRANSACTIONS, 2013, 42 (26) : 9637 - 9644
  • [36] Utilization of protein intrinsic disorder knowledge in structural proteomics
    Oldfield, Christopher J.
    Xue, Bin
    Van, Ya-Yue
    Ulrich, Eldon L.
    Markley, John L.
    Dunker, A. Keith
    Uversky, Vladimir N.
    BIOCHIMICA ET BIOPHYSICA ACTA-PROTEINS AND PROTEOMICS, 2013, 1834 (02): : 487 - 498
  • [37] Structural disorder and local order of hNopp140
    Tantos, Agnes
    Szrnka, Kriszta
    Szabo, Beata
    Bokor, Monika
    Kamasa, Pawel
    Matus, Peter
    Bekesi, Angela
    Tompa, Kalman
    Han, Kyou-Hoon
    Tompa, Peter
    BIOCHIMICA ET BIOPHYSICA ACTA-PROTEINS AND PROTEOMICS, 2013, 1834 (01): : 342 - 350
  • [38] The complexity of protein interactions unravelled from structural disorder
    Seoane, Beatriz
    Carbone, Alessandra
    PLOS COMPUTATIONAL BIOLOGY, 2021, 17 (01)
  • [39] Power Law Distribution Defines Structural Disorder as a Structural Element Directly Linked with Function
    Tompa, Peter
    Kalmar, Lajos
    JOURNAL OF MOLECULAR BIOLOGY, 2010, 403 (03) : 346 - 350
  • [40] Determination of structural disorder in Heusler-type phases
    Romaka, V. V.
    Rogl, G.
    Grytsiv, A.
    Rogl, P.
    COMPUTATIONAL MATERIALS SCIENCE, 2020, 172 (172)