Structural disorder within paramyxovirus nucleoproteins and phosphoproteins

被引:58
作者
Habchi, Johnny
Longhi, Sonia [1 ]
机构
[1] CNRS, UMR 6098, F-13288 Marseille 09, France
关键词
MEASLES-VIRUS NUCLEOPROTEIN; C-TERMINAL DOMAIN; VESICULAR-STOMATITIS-VIRUS; INTRINSICALLY UNSTRUCTURED PROTEINS; MOLECULAR RECOGNITION FEATURES; NUCLEOCAPSID-LIKE STRUCTURES; RESIDUAL DIPOLAR COUPLINGS; NATIVELY UNFOLDED PROTEINS; CELLULAR STRESS-RESPONSE; CRYSTAL-STRUCTURE;
D O I
10.1039/c1mb05204g
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
This review focuses on the experimental data showing the abundance of structural disorder within the nucleoprotein (N) and phosphoprotein (P) from three paramyxoviruses, namely Nipah (NiV), Hendra (HeV) and measles (MeV) viruses. We provide a detailed description of the molecular mechanisms governing the disorder-to-order transition of the intrinsically disordered C-terminal domains (N-TAIL) of their N proteins upon binding to the C-terminal X domain (XD) of the homologous P proteins. We also show that a significant flexibility persists within N-TAIL-XD complexes, which therefore provide illustrative examples of "fuzziness''. The functional implications of structural disorder are discussed in light of the ability of disordered regions to establish a complex molecular partnership, thereby leading to a variety of biological effects. Taking into account the promiscuity that typifies disordered regions, we propose that the main functional advantage of the abundance of disorder within viruses would reside in pleiotropy and genetic compaction, where a single gene would encode a single (regulatory) protein product able to establish multiple interactions via its disordered regions, and hence to exert multiple concomitant biological effects.
引用
收藏
页码:69 / 81
页数:13
相关论文
共 50 条
  • [21] Misprediction of Structural Disorder in Halophiles
    Pancsa, Rita
    Kovacs, Denes
    Tompa, Peter
    MOLECULES, 2019, 24 (03)
  • [22] Structural disorder and dynamics of elastin
    Muiznieks, Lisa D.
    Weiss, Anthony S.
    Keeley, Fred W.
    BIOCHEMISTRY AND CELL BIOLOGY, 2010, 88 (02) : 239 - 250
  • [24] Intrinsic disorder within the erythrocyte binding-like proteins from Plasmodium falciparum
    Blanc, Manuel
    Coetzer, Theresa L.
    Blackledge, Martin
    Haertlein, Michael
    Mitchell, Edward P.
    Forsyth, V. Trevor
    Jensen, Malene Ringkjobing
    BIOCHIMICA ET BIOPHYSICA ACTA-PROTEINS AND PROTEOMICS, 2014, 1844 (12): : 2306 - 2314
  • [25] Intrinsic Structural Disorder in Cytoskeletal Proteins
    Guharoy, Mainak
    Szabo, Beata
    Martos, Sara Contreras
    Kosol, Simone
    Tompa, Peter
    CYTOSKELETON, 2013, 70 (10) : 550 - 571
  • [26] Multisteric Regulation by Structural Disorder in Modular Signaling Proteins: An Extension of the Concept of Allostery
    Tompa, Peter
    CHEMICAL REVIEWS, 2014, 114 (13) : 6715 - 6732
  • [27] Intrinsic structural disorder of mouse proNGF
    Paoletti, Francesca
    Covaceuszach, Sonia
    Konarev, Peter V.
    Gonfloni, Stefania
    Malerba, Francesca
    Schwarz, Elisabeth
    Svergun, Dmitri I.
    Cattaneo, Antonino
    Lamba, Doriano
    PROTEINS-STRUCTURE FUNCTION AND BIOINFORMATICS, 2009, 75 (04) : 990 - 1009
  • [28] Disorder in Milk Proteins: α-Lactalbumin. Part A. Structural Properties and Conformational Behavior
    Permyakov, Eugene A.
    Permyakov, Serge E.
    Breydo, Leonid
    Redwan, Elrashdy M.
    Almehdar, Hussein A.
    Uversky, Vladimir N.
    CURRENT PROTEIN & PEPTIDE SCIENCE, 2016, 17 (04) : 352 - 367
  • [29] Inherent Structural Disorder and Dimerisation of Murine Norovirus NS1-2 Protein
    Baker, Estelle S.
    Luckner, Sylvia R.
    Krause, Kurt L.
    Lambden, Paul R.
    Clarke, Ian N.
    Ward, Vernon K.
    PLOS ONE, 2012, 7 (02):
  • [30] Structural stability and cation disorder in Aurivillius phases
    Garcia-Guaderrama, M.
    Fuentes, L.
    Marquez-Lucero, A.
    Blanco, O.
    MATERIALS RESEARCH BULLETIN, 2012, 47 (11) : 3850 - 3854