Fixed point methods for the generalized stability of functional equations in a single variable

被引:215
作者
Cadariu, Liviu [1 ]
Radu, Viorel [2 ]
机构
[1] Univ Politehn Timisoara, Dept Matemat, Timisoara 300006, Romania
[2] Univ Vest Timisoara, Fac Matemat Informat, Timisoara 300223, Romania
关键词
D O I
10.1155/2008/749392
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We discuss on the generalized Ulam-Hyers stability for functional equations in a single variable, including the nonlinear functional equations, the linear functional equations, and a generalization of functional equation for the square root spiral. The stability results have been obtained by a fixed point method. This method introduces a metrical context and shows that the stability is related to some fixed point of a suitable operator. Copyright (C) 2008.
引用
收藏
页数:15
相关论文
共 39 条
[1]   Stability of functional equations in single variable [J].
Agarwal, RP ;
Xu, B ;
Zhang, WN .
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2003, 288 (02) :852-869
[2]  
[Anonymous], MATH SCI RES J
[3]  
[Anonymous], CARPATHIAN J MATH
[4]  
Aoki T., 1950, J MATH SOC JAPAN, V2, P64, DOI DOI 10.2969/JMSJ/00210064
[5]   THE STABILITY OF CERTAIN FUNCTIONAL-EQUATIONS [J].
BAKER, JA .
PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 1991, 112 (03) :729-732
[6]   CLASSES OF TRANSFORMATIONS AND BORDERING TRANSFORMATIONS [J].
BOURGIN, DG .
BULLETIN OF THE AMERICAN MATHEMATICAL SOCIETY, 1951, 57 (04) :223-237
[7]  
CADARIU L, 2004, AUTOMATION COMPUTERS, V13, P31
[8]  
Cadariu L., 2003, An. Univ. Timisoara, Ser. Mat. Inform., V41, P25
[9]  
CADARIU L, 2004, ITERATION THEORY, V346, P43
[10]  
CADARIU L, 2003, FIXED POINT THEORY, V4, P7