Estimates on the spectral interval of validity of the anti-maximum principle

被引:1
作者
Bobkov, Vladimir [1 ,2 ]
Drabek, Pavel [1 ,2 ]
Ilyasov, Yavdat [3 ]
机构
[1] Univ West Bohemia, Fac Appl Sci, Dept Math, Univ 8, Plzen 30100, Czech Republic
[2] Univ West Bohemia, Fac Appl Sci, NTIS, Univ 8, Plzen 30100, Czech Republic
[3] Russian Acad Sci, Ufa Sci Ctr, Inst Math, 112 Chernyshevsky Str, Ufa 450008, Russia
关键词
Anti-maximum principle; Maximum principle; p-Laplacian; Ground state; Nodal solutions; P-LAPLACIAN; ANTIMAXIMUM PRINCIPLE; EXISTENCE; BIFURCATION; EQUATIONS;
D O I
10.1016/j.jde.2020.02.020
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
The anti-maximum principle for the homogeneous Dirichlet problem to -Delta(p)u =lambda|u|(p-2)u + f(x) with positive f is an element of L-infinity (Omega) states the existence of a critical value lambda(f) > lambda(1) such that any solution of this problem with lambda is an element of(lambda(1), lambda(f)) is strictly negative. In this paper, we give a variational upper bound for lambda(f) and study its properties. As an important supplementary result, we investigate the branch of ground state solutions of the considered boundary value problem in (lambda(1), lambda(2)). (c) 2020 Elsevier Inc. All rights reserved.
引用
收藏
页码:2956 / 2976
页数:21
相关论文
共 31 条
  • [1] Allegretto W, 1998, NONLINEAR ANAL-THEOR, V32, P819
  • [2] ANANE A, 1987, CR ACAD SCI I-MATH, V305, P725
  • [3] [Anonymous], 1994, Differ Integr Equ
  • [4] [Anonymous], 1997, MINIMAX THEOREMS
  • [5] [Anonymous], 2001, ELLIPTIC PARTIAL DIF
  • [6] [Anonymous], THESIS
  • [7] Bifurcation theory and related problems:: Anti-maximum principle and resonance
    Arcoya, D
    Gámez, JL
    [J]. COMMUNICATIONS IN PARTIAL DIFFERENTIAL EQUATIONS, 2001, 26 (9-10) : 1879 - 1911
  • [8] Arias M., 2000, Differ. Integr. Equ., V13, P217
  • [9] Partial symmetry of least energy nodal solutions to some variational problems
    Bartsch, T
    Weth, T
    Willew, M
    [J]. JOURNAL D ANALYSE MATHEMATIQUE, 2005, 96 (1): : 1 - 18
  • [10] On the higher Cheeger problem
    Bobkov, Vladimir
    Parini, Enea
    [J]. JOURNAL OF THE LONDON MATHEMATICAL SOCIETY-SECOND SERIES, 2018, 97 : 575 - 600