Persistent spin dynamics and absence of spin freezing in the H-T phase diagram of the two-dimensional triangular antiferromagnet YbMgGaO4

被引:17
|
作者
Ding, Zhaofeng [1 ,2 ]
Zhu, Zihao [1 ,2 ]
Zhang, Jian [1 ,2 ]
Tan, Cheng [1 ,2 ]
Yang, Yanxing [1 ,2 ]
MacLaughlin, Douglas E. [3 ]
Shu, Lei [1 ,2 ,4 ,5 ]
机构
[1] Fudan Univ, State Key Lab Surface Phys, Shanghai 200433, Peoples R China
[2] Fudan Univ, Dept Phys, Shanghai 200433, Peoples R China
[3] Univ Calif Riverside, Dept Phys & Astron, Riverside, CA 92521 USA
[4] Nanjing Univ, Collaborat Innovat Ctr Adv Microstruct, Nanjing 210093, Peoples R China
[5] Shanghai Res Ctr Quantum Sci, Shanghai 201315, Peoples R China
基金
中国国家自然科学基金;
关键词
KNIGHT-SHIFTS; ZERO-FIELD; RELAXATION; FLUCTUATIONS; STATE;
D O I
10.1103/PhysRevB.102.014428
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
We report results of muon spin relaxation and rotation (mu SR) experiments on the spin-liquid candidate YbMgGaO4. No static magnetism greater than or similar to 0.003/mu(B) per Yb ion, ordered or disordered, is observed down to 22 mK, a factor of 2 lower in temperature than previous measurements. Persistent (temperature-independent) spin dynamics are observed up to 0.20 K and at least 1 kOe, thus extending previous zero-field mu SR results over a substantial region of the H-T phase diagram. Knight shift measurements in a 10-kOe transverse field reveal two lines with nearly equal amplitudes. Inhomogeneous muon depolarization in a longitudinal field, previously characterized by stretched-exponential relaxation due to spatial inhomogeneity, is fit equally well with two exponentials, also of equal amplitudes. We attribute these results to two interstitial muon sites in the unit cell rather than disorder or other spatial distribution. Further evidence for this attribution is found from agreement between the ratio of the two measured relaxation rates and calculated mean-square local Yb3+ dipolar fields at candidate muon sites. Zero-field data can be understood as a combination of two-exponential dynamic relaxation and quasistatic nuclear dipolar fields.
引用
收藏
页数:10
相关论文
共 7 条
  • [1] Spin Dynamics of Two-Dimensional Triangular-Lattice Antiferromagnet 3R-AgFeO2
    Zvereva, E. A.
    Vasilchikova, T. M.
    Stratan, M. I.
    Belik, A. A.
    Vasiliev, A. N.
    APPLIED MAGNETIC RESONANCE, 2019, 50 (05) : 637 - 648
  • [2] Two-dimensional spin liquid behaviour in the triangular-honeycomb antiferromagnet TbInO3
    Clark, Lucy
    Sala, Gabriele
    Maharaj, Dalini D.
    Stone, Matthew B.
    Knight, Kevin S.
    Telling, Mark T. F.
    Wang, Xueyun
    Xu, Xianghan
    Kim, Jaewook
    Li, Yanbin
    Cheong, Sang-Wook
    Gaulin, Bruce D.
    NATURE PHYSICS, 2019, 15 (03) : 262 - +
  • [3] Two-dimensional magnetism and spin-size effect in the S=1 triangular antiferromagnet NiGa2S4
    Nambu, Yusuke
    Nakatsuji, Satoru
    JOURNAL OF PHYSICS-CONDENSED MATTER, 2011, 23 (16)
  • [4] Spin-lattice coupling in a ferrimagnetic spinel: Exotic H-T phase diagram of MnCr2S4 up to 110 T
    Miyata, A.
    Suwa, H.
    Nomura, T.
    Prodan, L.
    Felea, V
    Skourski, Y.
    Deisenhofer, J.
    von Nidda, H-A Krug
    Portugall, O.
    Zherlitsyn, S.
    Tsurkan, V
    Wosnitza, J.
    Loidl, A.
    PHYSICAL REVIEW B, 2020, 101 (05)
  • [5] Ba8MnNb6O24: A model two-dimensional spin-5/2 triangular lattice antiferromagnet
    Rawl, R.
    Ge, L.
    Lu, Z.
    Evenson, Z.
    Dela Cruz, C. R.
    Huang, Q.
    Lee, M.
    Choi, E. S.
    Mourigal, M.
    Zhou, H. D.
    Ma, J.
    PHYSICAL REVIEW MATERIALS, 2019, 3 (05)
  • [6] Coherent Spin Dynamics of Electrons in Two-Dimensional (PEA)2PbI4 Perovskites
    Kirstein, Erik
    Zhukov, Evgeny A. .
    Yakovlev, Dmitri R. .
    Kopteva, Nataliia E.
    Harkort, Carolin
    Kudlacik, Dennis
    Hordiichuk, Oleh
    Kovalenko, Maksym V.
    Bayer, Manfred
    NANO LETTERS, 2023, 23 (01) : 205 - 212
  • [7] Intrinsic persistent spin texture in two-dimensional T-XY (X, Y = P, As, Sb, Bi; X ≠ Y)
    Guo, San-Dong
    Feng, Xu-Kun
    Huang, Dong
    Chen, Shaobo
    Wang, Guangzhao
    Ang, Yee Sin
    PHYSICAL REVIEW B, 2023, 108 (07)