We improve Mahler's inequality \e(g) - a\ > g(-33g), a is an element of N, where g is any sufficiently large positive integer by decreasing the constant 33 to 19.183. This we do by computing precise asymptotics for a set of approximants to the exponential which is slightly different from the classical Hermite-Pade: approximants. These approximants are related to the Legendre-type polynomials studied by Hata, which allows us to use his results about the arithmetic of the coefficients. (C) 1999 Academic Press.
机构:
Univ Carlos III Madrid, Escuela Politecn Super, Dpto Matemat, Leganes 28911, SpainUniv Carlos III Madrid, Escuela Politecn Super, Dpto Matemat, Leganes 28911, Spain
Cacoq, J.
de la Calle Ysern, B.
论文数: 0引用数: 0
h-index: 0
机构:
Univ Politecn Madrid, ETS Ingenieros Ind, Dpto Matemat Aplicada, E-28006 Madrid, SpainUniv Carlos III Madrid, Escuela Politecn Super, Dpto Matemat, Leganes 28911, Spain
de la Calle Ysern, B.
Lopez Lagomasino, G.
论文数: 0引用数: 0
h-index: 0
机构:
Univ Carlos III Madrid, Escuela Politecn Super, Dpto Matemat, Leganes 28911, SpainUniv Carlos III Madrid, Escuela Politecn Super, Dpto Matemat, Leganes 28911, Spain
机构:
Indiana Univ Purdue Univ, Dept Math Sci, 402 North Blackford St, Indianapolis, IN 46202 USAIndiana Univ Purdue Univ, Dept Math Sci, 402 North Blackford St, Indianapolis, IN 46202 USA
Yattselev, Maxim L.
CANADIAN JOURNAL OF MATHEMATICS-JOURNAL CANADIEN DE MATHEMATIQUES,
2016,
68
(05):
: 1159
-
1200