Hermite-Pade approximants to exponential functions and an inequality of Mahler

被引:6
|
作者
Wielonsky, F [1 ]
机构
[1] INRIA, F-06902 Sophia Antipolis, France
关键词
D O I
10.1006/jnth.1998.2334
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We improve Mahler's inequality \e(g) - a\ > g(-33g), a is an element of N, where g is any sufficiently large positive integer by decreasing the constant 33 to 19.183. This we do by computing precise asymptotics for a set of approximants to the exponential which is slightly different from the classical Hermite-Pade: approximants. These approximants are related to the Legendre-type polynomials studied by Hata, which allows us to use his results about the arithmetic of the coefficients. (C) 1999 Academic Press.
引用
收藏
页码:230 / 249
页数:20
相关论文
共 50 条
  • [21] Incomplete Pade approximation and convergence of row sequences of Hermite-Pade approximants
    Cacoq, J.
    de la Calle Ysern, B.
    Lopez Lagomasino, G.
    JOURNAL OF APPROXIMATION THEORY, 2013, 170 : 59 - 77
  • [22] On the convergence of multi-level Hermite-Pade approximants
    Ricardo, L. G. Gonzalez
    Lagomasino, G. Lopez
    Peralta, S. Medina
    PHYSICA D-NONLINEAR PHENOMENA, 2022, 440
  • [23] An algorithm for the computation of Hermite-Pade approximations to the exponential function:: divided differences and Hermite-Pade forms
    Sablonnière, P
    NUMERICAL ALGORITHMS, 2003, 33 (1-4) : 443 - 452
  • [24] CONVERGENCE THEOREMS FOR ROWS OF HERMITE-PADE INTEGRAL APPROXIMANTS
    BAKER, GA
    GRAVESMORRIS, PR
    ROCKY MOUNTAIN JOURNAL OF MATHEMATICS, 1991, 21 (01) : 41 - 69
  • [25] Mixed Type Hermite-Pade Approximants for a Nikishin System
    Lysov, V. G.
    PROCEEDINGS OF THE STEKLOV INSTITUTE OF MATHEMATICS, 2020, 311 (01) : 199 - 213
  • [26] Discrete integrable systems generated by Hermite-Pade approximants
    Aptekarev, Alexander I.
    Derevyagin, Maxim
    Van Assche, Walter
    NONLINEARITY, 2016, 29 (05) : 1487 - 1506
  • [27] Strong Asymptotics of Hermite-Pade Approximants for Angelesco Systems
    Yattselev, Maxim L.
    CANADIAN JOURNAL OF MATHEMATICS-JOURNAL CANADIEN DE MATHEMATIQUES, 2016, 68 (05): : 1159 - 1200
  • [28] SOME CONVERGENCE AND DIVERGENCE THEOREMS FOR HERMITE-PADE APPROXIMANTS
    BAKER, GA
    GRAVESMORRIS, PR
    JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 1995, 59 (03) : 285 - 293
  • [29] Direct and inverse results for multipoint Hermite-Pade approximants
    Bosuwan, N.
    Lopez Lagomasino, G.
    Zaldivar Gerpe, Y.
    ANALYSIS AND MATHEMATICAL PHYSICS, 2019, 9 (02) : 761 - 779
  • [30] QUADRATIC HERMITE-PADE APPROXIMATION TO THE EXPONENTIAL FUNCTION
    BORWEIN, PB
    CONSTRUCTIVE APPROXIMATION, 1986, 2 (04) : 291 - 302