Acid-treated high-amylose corn starch suppresses high-fat diet-induced steatosis

被引:1
|
作者
Yoshida, Ryutaro [1 ]
Yano, Yoshihiko [1 ]
Hoshi, Namiko [1 ]
Okamoto, Norihiro [1 ]
Sui, Yunlong [1 ]
Yamamoto, Atsushi [1 ]
Asaji, Naoki [1 ]
Shiomi, Yuuki [1 ]
Yasutomi, Eiichiro [1 ]
Hatazawa, Yuri [1 ]
Hayashi, Hiroki [1 ]
Ueda, Yoshihide [1 ]
Kodama, Yuzo [1 ]
机构
[1] Kobe Univ, Dept Internal Med, Div Gastroenterol, Grad Sch Med, Kobe, Hyogo, Japan
关键词
RS4; steatosis; SCFA; microbiota; high fat diet; RS4-TYPE RESISTANT STARCH; LEPTIN-DEFICIENT MICE; PPAR-GAMMA; LIVER; SEQUENCES; OBESITY;
D O I
10.1111/1750-3841.16146
中图分类号
TS2 [食品工业];
学科分类号
0832 ;
摘要
Resistant starch (RS) has been reported to improve steatosis as well as obesity. Type 4 resistant starch (RS4), a chemically modified starch, is particularly hard to digest and suggesting higher efficacy. However, because the effects of RS4 on steatosis are not yet fully understood, the effects of RS4 on steatosis were examined using a murine high-fat diet model. Seven-week-old male mice were divided into three groups and fed a normal diet, a high-fat diet (HFD), or a high-fat diet with added RS (HFD + RS). Amylofiber SH(R) produced from acid-treated corn starch was used as the dietary RS. At 22 weeks old, hepatic steatosis and short chain fatty acid (SCFA) content and gut microbiota in cecum stool samples were analyzed. The ratio of body weight to 7 weeks was significantly suppressed in the HFD + RS group compared to the HFD group (132.2 +/- 1.4% vs. 167.2 +/- 3.9%, p = 0.0076). Macroscopic and microscopic steatosis was also suppressed in the HFD + RS group. Analysis of cecum stool samples revealed elevated SCFA levels in the HFD + RS group compared with the HFD group. Metagenome analysis revealed that Bifidobacterium (17.9 +/- 1.9% vs. 3.6 +/- 0.7%, p = 0.0019) and Lactobacillus (14.8 +/- 3.4% vs. 0.72 +/- 0.23%, p = 0.0045), which degrade RS to SCFA, were more prevalent in the HFD + RS group than the HFD group. In conclusion, RS4 suppressed steatosis, and increased Bifidobacterium and Lactobacillus, and SCFAs. RS4 may prevent steatosis by modulating the intestinal environment.
引用
收藏
页码:2173 / 2184
页数:12
相关论文
共 50 条
  • [1] High fat diet-induced hyperlipidemia and tissue steatosis in rabbits through modulating ileal microbiota
    Guo, Zhiguo
    Ali, Qasim
    Abaidullah, Muhammad
    Gao, Zimin
    Diao, Xinying
    Liu, Boshuai
    Wang, Zhichang
    Zhu, Xiaoyan
    Cui, Yalei
    Li, Defeng
    Shi, Yinghua
    APPLIED MICROBIOLOGY AND BIOTECHNOLOGY, 2022, 106 (21) : 7187 - 7207
  • [2] High-Fat Diet-Induced Retinal Dysfunction
    Chang, Richard Cheng-An
    Shi, Liheng
    Huang, Cathy Chia-Yu
    Kim, Andy Jeesu
    Ko, Michael L.
    Zhou, Beiyan
    Ko, Gladys Y. -P.
    INVESTIGATIVE OPHTHALMOLOGY & VISUAL SCIENCE, 2015, 56 (04) : 2367 - 2380
  • [3] Hypoxia Suppresses High Fat Diet-Induced Steatosis And Development Of Hepatic Adenomas
    Sweeney, Nathan W.
    Gomes, Cecil J.
    De Armond, Richard
    Centuori, Sara M.
    Parthasarathy, Sairam
    Martinez, Jesse D.
    HYPOXIA, 2019, 7 : 53 - 63
  • [4] Protocatechuic Acid Suppresses Lipid Uptake and Synthesis through the PPARγ Pathway in High-Fat Diet-Induced NAFLD Mice
    Li, Jia
    Li, Chaoyue
    Wu, Xue
    Dong, Yonghui
    Li, Yunlong
    Jiao, Xiaowen
    Li, Jiating
    Han, Lin
    Wang, Min
    JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY, 2025, 73 (07) : 4012 - 4026
  • [5] Asiatic acid attenuates high-fat diet-induced impaired spermatogenesis
    Miao, Xi-Li
    Gao, Gui-Min
    Jiang, Lei
    Xu, Rui
    Wan, Da-Peng
    EXPERIMENTAL AND THERAPEUTIC MEDICINE, 2018, 15 (03) : 2397 - 2403
  • [6] Chlorogenic Acid Improves High Fat Diet-Induced Hepatic Steatosis and Insulin Resistance in Mice
    Ma, Yongjie
    Gao, Mingming
    Liu, Dexi
    PHARMACEUTICAL RESEARCH, 2015, 32 (04) : 1200 - 1209
  • [7] Effect of Adrenergic Agonists on High-Fat Diet-Induced Hepatic Steatosis in Mice
    Nakade, Yukiomi
    Kitano, Rena
    Yamauchi, Taeko
    Kimoto, Satoshi
    Sakamoto, Kazumasa
    Inoue, Tadahisa
    Kobayashi, Yuji
    Ohashi, Tomohiko
    Sumida, Yoshio
    Ito, Kiyoaki
    Yoneda, Masashi
    INTERNATIONAL JOURNAL OF MOLECULAR SCIENCES, 2020, 21 (24) : 1 - 15
  • [8] Propionylated high-amylose maize starch alleviates obesity by modulating gut microbiota in high-fat diet-fed mice
    Xie, Zhuqing
    Yao, Minghua
    Castro-Mejia, Josue L.
    Ma, Ming
    Zhu, Yuyan
    Fu, Xiong
    Huang, Qiang
    Zhang, Bin
    JOURNAL OF FUNCTIONAL FOODS, 2023, 102
  • [9] Mentha canadensis attenuates adiposity and hepatic steatosis in high-fat diet-induced obese mice
    Han, Youngji
    Choi, Ji-Young
    Kwon, Eun-Young
    NUTRITION RESEARCH AND PRACTICE, 2023, 17 (05) : 870 - 882
  • [10] Intrinsic aerobic capacity impacts susceptibility to acute high-fat diet-induced hepatic steatosis
    Morris, E. Matthew
    Jackman, Matthew R.
    Johnson, Ginger C.
    Liu, Tzu-Wen
    Lopez, Jordan L.
    Kearney, Monica L.
    Fletcher, Justin A.
    Meers, Grace M. E.
    Koch, Lauren G.
    Britton, Stephen L.
    Rector, R. Scott
    Ibdah, Jamal A.
    MacLean, Paul S.
    Thyfault, John P.
    AMERICAN JOURNAL OF PHYSIOLOGY-ENDOCRINOLOGY AND METABOLISM, 2014, 307 (04): : E355 - E364