Identification of Sclerotinia stem rot resistance quantitative trait loci in a chickpea (Cicer arietinum) recombinant inbred line population

被引:2
作者
Mwape, Virginia W. [1 ,2 ]
Khoo, Kelvin H. P. [3 ]
Chen, Kefei [4 ]
Khentry, Yuphin [1 ]
Newman, Toby E. [1 ]
Derbyshire, Mark C. [1 ]
Mather, Diane E. [3 ]
Kamphuis, Lars G. [1 ,2 ]
机构
[1] Curtin Univ, Ctr Crop Dis Management, Bentley, WA 6102, Australia
[2] CSIRO, Agr & Food, Floreat, WA 6913, Australia
[3] Univ Adelaide, Waite Res Inst, Sch Agr Food & Wine, Urrbrae, SA 5064, Australia
[4] Curtin Univ, Stat Australian Grains Ind West, Bentley, WA 6102, Australia
关键词
chickpea; disease resistance; Fabaceae; legume; polygenic disease resistance; quantitative trait locus analysis; Sclerotinia stem rot; Sclerotinia white mold; ASCOCHYTA BLIGHT; DISEASE RESISTANCE; WHITE MOLD; QTL; IMPROVEMENT; NORMALITY; SUNFLOWER; DEFENSE; PLANTS; AUXIN;
D O I
10.1071/FP21216
中图分类号
Q94 [植物学];
学科分类号
071001 ;
摘要
Sclerotinia stem rot (SSR), caused by Sclerotinia scierotiorum, is one of the most economically devastating diseases in chickpea (Cicer arietinum L.). No complete resistance is available in chickpea to this disease, and the inheritance of partial resistance is not understood. Two hundred F-7 recombinant inbred lines (RILs) derived from a cross between a partially resistant variety PBA HatTrick, and a highly susceptible variety Kyabra were characterised for their responses to SSR inoculation. Quantitative trait locus (QTL) analysis was conducted for the area under the disease progress curve (AUDPC) after RIL infection with S. scierotiorum. Four QTLs on chromosomes, Ca4 (qSSR4-1, qSSR4-2), Ca6 (qSSR6-1) and Ca7 (qSSR7- 1), individually accounted for between 4.2 and 15.8% of the total estimated phenotypic variation for the response to SSR inoculation. Candidate genes located in these QTL regions are predicted to be involved in a wide range of processes, including phenylpropanoid biosynthesis, plant-pathogen interaction, and plant hormone signal transduction. This is the first study investigating the inheritance of resistance to S. scierotiorum in chickpea. Markers associated with the identified QTLs could be employed for marker-assisted selection in chickpea breeding.
引用
收藏
页码:634 / 646
页数:13
相关论文
共 68 条
[1]   Evolution of cultivated chickpea: four bottlenecks limit diversity and constrain adaptation [J].
Abbo, S ;
Berger, J ;
Turner, NC .
FUNCTIONAL PLANT BIOLOGY, 2003, 30 (10) :1081-1087
[2]   Pathogenesis-related proteins and peptides as promising tools for engineering plants with multiple stress tolerance [J].
Ali, Sajad ;
Ganai, Bashir Ahmad ;
Kamili, Azra N. ;
Bhat, Ajaz Ali ;
Mir, Zahoor Ahmad ;
Bhat, Javaid Akhter ;
Tyagi, Anshika ;
Islam, Sheikh Tajamul ;
Mushtaq, Muntazir ;
Yadav, Prashant ;
Rawat, Sandhya ;
Grover, Anita .
MICROBIOLOGICAL RESEARCH, 2018, 212 :29-37
[3]  
ALTSCHUL SF, 1990, J MOL BIOL, V215, P403, DOI 10.1006/jmbi.1990.9999
[4]  
[Anonymous], 2017, ASReml-R Reference Manual Version 4
[5]  
[Anonymous], 2019, FOOD AGR ORG UN
[6]   Mapping QTL for resistance to botrytis grey mould in chickpea [J].
Anuradha, Chetukuri ;
Gaur, Pooran M. ;
Pande, Suresh ;
Gali, Kishore K. ;
Ganesh, Muthyl ;
Kumar, Jagdish ;
Varshney, Rajeev K. .
EUPHYTICA, 2011, 182 (01) :1-9
[7]   Identification of QTLs for resistance to Sclerotinia sclerotiorum in soybean [J].
Arahana, VS ;
Graef, GL ;
Specht, JE ;
Steadman, JR ;
Eskridge, KM .
CROP SCIENCE, 2001, 41 (01) :180-188
[8]  
Bateman A, 2002, NUCLEIC ACIDS RES, V30, P276, DOI [10.1093/nar/gkp985, 10.1093/nar/gkr1065, 10.1093/nar/gkh121]
[9]   Genomics-assisted breeding in four major pulse crops of developing countries: present status and prospects [J].
Bohra, Abhishek ;
Pandey, Manish K. ;
Jha, Uday C. ;
Singh, Balwant ;
Singh, Indra P. ;
Datta, Dibendu ;
Chaturvedi, Sushil K. ;
Nadarajan, N. ;
Varshney, Rajeev K. .
THEORETICAL AND APPLIED GENETICS, 2014, 127 (06) :1263-1291
[10]   INDEX OF PLANT HOSTS OF SCLEROTINIA-SCLEROTIORUM [J].
BOLAND, GJ ;
HALL, R .
CANADIAN JOURNAL OF PLANT PATHOLOGY-REVUE CANADIENNE DE PHYTOPATHOLOGIE, 1994, 16 (02) :93-108