Laurent series expansions of multiple zeta-functions of Euler-Zagier type at integer points

被引:6
作者
Matsumoto, Kohji [1 ]
Onozuka, Tomokazu [2 ]
Wakabayashi, Isao [3 ]
机构
[1] Nagoya Univ, Grad Sch Math, Chikusa Ku, Nagoya, Aichi 4648602, Japan
[2] Kyushu Univ, Multiple Zeta Res Ctr, Nishi Ku, Fukuoka 8190395, Japan
[3] Seikei Univ, Musashino, Tokyo 1808633, Japan
基金
日本学术振兴会;
关键词
ANALYTIC CONTINUATION; VALUES;
D O I
10.1007/s00209-019-02337-2
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We give explicit expressions (or at least an algorithm to obtain such expressions) of the coefficients of the Laurent series expansions of the Euler-Zagier multiple zeta-functions at any integer points. The main tools are the Mellin-Barnes integral formula and the harmonic product formulas. The Mellin-Barnes integral formula is used in the induction process on the number of variables, and the harmonic product formula is used to show that the Laurent series expansion outside the domain of convergence can be obtained from that inside the domain of convergence.
引用
收藏
页码:623 / 642
页数:20
相关论文
共 16 条
[1]   Multiple zeta values at non-positive integers [J].
Akiyama, S ;
Tanigawa, Y .
RAMANUJAN JOURNAL, 2001, 5 (04) :327-351
[2]   Analytic continuation of multiple zeta-functions and their values at non-positive integers [J].
Akiyama, S ;
Egami, S ;
Tanigawa, Y .
ACTA ARITHMETICA, 2001, 98 (02) :107-116
[3]  
Berndt B.C., 1985, Ramanujan's Notebooks: Part 1
[4]  
Fuks B.A, 1963, TRANSL MATH MONOGRAP, V8
[5]   MULTIPLE HARMONIC SERIES [J].
HOFFMAN, ME .
PACIFIC JOURNAL OF MATHEMATICS, 1992, 152 (02) :275-290
[6]   AN INTEGRAL REPRESENTATION OF MULTIPLE HURWITZ-LERCH ZETA FUNCTIONS AND GENERALIZED MULTIPLE BERNOULLI NUMBERS [J].
Komori, Yasushi .
QUARTERLY JOURNAL OF MATHEMATICS, 2010, 61 (04) :437-496
[7]   Asymptotic expansions of double zeta-functions of Barnes, of Shintani, and Eisenstein series [J].
Matsumoto, K .
NAGOYA MATHEMATICAL JOURNAL, 2003, 172 :59-102
[8]  
Matsumoto K, 2002, NUMBER THEORY FOR THE MILLENNIUM II, P417
[9]   The analytic continuation and the asymptotic behaviour of certain multiple zeta-functions I [J].
Matsumoto, K .
JOURNAL OF NUMBER THEORY, 2003, 101 (02) :223-243
[10]   Mean value theorems for the double zeta-function [J].
Matsumoto, Kohji ;
Tsumura, Hirofumi .
JOURNAL OF THE MATHEMATICAL SOCIETY OF JAPAN, 2015, 67 (01) :383-406