Scalable HPC & AI Infrastructure for COVID-19 Therapeutics

被引:3
|
作者
Lee, Hyungro [1 ]
Merzky, Andre [1 ]
Tan, Li [2 ]
Titov, Mikhail [1 ]
Turilli, Matteo [1 ]
Alfe, Dario [3 ]
Bhati, Agastya [3 ]
Brace, Alex [4 ]
Clyde, Austin [5 ]
Coveney, Peter [3 ]
Ma, Heng [4 ]
Ramanathan, Arvind [4 ]
Stevens, Rick [5 ]
Trifan, Anda [6 ]
Van Dam, Hubertus [2 ]
Wan, Shunzhou [3 ]
Wilkinson, Sean [7 ]
Jha, Shantenu [1 ,2 ]
机构
[1] Rutgers State Univ, Piscataway, NJ 08854 USA
[2] Brookhaven Natl Lab, Upton, NY 11973 USA
[3] UCL, London, England
[4] Argonne Natl Lab, Lemont, IL USA
[5] Univ Chicago, Chicago, IL 60637 USA
[6] Univ Illinois, Champaign, IL USA
[7] Oak Ridge Natl Lab, Knoxville, TN USA
来源
PROCEEDINGS OF THE PLATFORM FOR ADVANCED SCIENTIFIC COMPUTING CONFERENCE (PASC '21) | 2021年
基金
欧盟地平线“2020”; 美国能源部;
关键词
high-performance computing; machine learning; workflows; docking molecular dynamics; free energy estimation; COVID-19; FREE-ENERGY; PREDICTION;
D O I
10.1145/3468267.3470573
中图分类号
TP39 [计算机的应用];
学科分类号
081203 ; 0835 ;
摘要
COVID-19 has claimed more than 2.7 x 10(6) lives and resulted in over 124 x 10(6) infections. There is an urgent need to identify drugs that can inhibit SARS-CoV-2. We discuss innovations in computational infrastructure and methods that are accelerating and advancing drug design. Specifically, we describe several methods that integrate artificial intelligence and simulation-based approaches, and the design of computational infrastructure to support these methods at scale. We discuss their implementation, characterize their performance, and highlight science advances that these capabilities have enabled.
引用
收藏
页数:13
相关论文
共 50 条
  • [1] Overview of HPC and AI Computing for COVID-19 in the US
    Stevens, Rick L.
    PACT '20: PROCEEDINGS OF THE ACM INTERNATIONAL CONFERENCE ON PARALLEL ARCHITECTURES AND COMPILATION TECHNIQUES, 2020, : 1 - 1
  • [2] COVID-19 therapeutics
    Focosi, Daniele
    Franchini, Massimo
    Maggi, Fabrizio
    Shoham, Shmuel
    CLINICAL MICROBIOLOGY REVIEWS, 2024, 37 (02)
  • [3] A Survey for Using AI Techniques for Predicting COVID-19
    Aldabagh, Hanan Anas
    Altalib, Ghayda Abdulaziz
    PROCEEDING OF THE 2ND 2022 INTERNATIONAL CONFERENCE ON COMPUTER SCIENCE AND SOFTWARE ENGINEERING (CSASE 2022), 2022, : 1 - 6
  • [4] The Convergence of HPC, AI and Big Data in Rapid-Response to the COVID-19 Pandemic
    Sukumar, Sreenivas R.
    Balma, Jacob A.
    Rickett, Christopher D.
    Maschhoff, Kristyn J.
    Landman, Joseph
    Yates, Charles R.
    Chittiboyina, Amar G.
    Peterson, Yuri K.
    Vose, Aaron
    Byler, Kendall
    Baudry, Jerome
    Khan, Ikhlas A.
    DRIVING SCIENTIFIC AND ENGINEERING DISCOVERIES THROUGH THE INTEGRATION OF EXPERIMENT, BIG DATA, AND MODELING AND SIMULATION, 2022, 1512 : 157 - 172
  • [5] AI & COVID-19
    Bacciu, Davide
    Girardi, Emanuela
    Maratea, Marco
    Sousa, Jose
    INTELLIGENZA ARTIFICIALE, 2021, 15 (02) : 45 - 53
  • [6] COVID-19: Vaccines and therapeutics
    Ponnampalli, Swapna
    Birudukota, Naga Venkata Suryanarayana
    Kamal, Ahmed
    BIOORGANIC & MEDICINAL CHEMISTRY LETTERS, 2022, 75
  • [7] COVID-19: Characteristics and Therapeutics
    Chilamakuri, Rameswari
    Agarwal, Saurabh
    CELLS, 2021, 10 (02) : 1 - 29
  • [8] COVID-19: Therapeutics and Their Toxicities
    Chary, Michael A.
    Barbuto, Alexander F.
    Izadmehr, Sudeh
    Hayes, Bryan D.
    Burns, Michele M.
    JOURNAL OF MEDICAL TOXICOLOGY, 2020, 16 (03) : 284 - 294
  • [9] COVID-19: Therapeutics and Their Toxicities
    Michael A. Chary
    Alexander F. Barbuto
    Sudeh Izadmehr
    Bryan D. Hayes
    Michele M. Burns
    Journal of Medical Toxicology, 2020, 16 : 284 - 294
  • [10] Leveraging Artificial Intelligence (AI) Capabilities for COVID-19 Containment
    Surianarayanan, Chellammal
    Chelliah, Pethuru Raj
    NEW GENERATION COMPUTING, 2021, 39 (3-4) : 717 - 741