An Operator Related to the Sub-Laplacian on the Quaternionic Heisenberg Group

被引:0
作者
Wang, Haimeng [1 ]
Wang, Bei [1 ]
机构
[1] Jiangsu Second Normal Univ, Dept Math & Informat Technol, Nanjing 210013, Peoples R China
关键词
Fundamental solution; The group Fourier transform; The non-isotropic quaternionic Heisenberg group; Sub-Laplacian; DIFFERENTIAL-OPERATORS; FUNDAMENTAL SOLUTION; COMPLEX; KERNEL;
D O I
10.1007/s00006-022-01206-2
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We study an operator related to the sub-Laplacian on the non-isotropic quaternionic Heisenberg group and construct the fundamental solution for this operator. For the isotropic case, we derive the closed form of this solution. The techniques we used can be applied to the standard Heisenberg group. We also give the connection between this operator and the Heisenberg sub-Laplacian.
引用
收藏
页数:27
相关论文
共 26 条
[1]   Fundamental solutions of a class of ultra-hyperbolic operators on pseudo H-type groups [J].
Bauer, Wolfram ;
Froehly, Andre ;
Markina, Irina .
ADVANCES IN MATHEMATICS, 2020, 369
[2]  
Beals R, 1997, B SCI MATH, V121, P1
[3]  
Beals R, 1996, MATH NACHR, V181, P81
[4]  
Beals R., 2016, CALCULUS HEISENBERG
[5]  
Berenstein C., 2001, Laguerre Calculus and Its Applications On the Heisenberg Group, DOI [10.1090/amsip/022, DOI 10.1090/AMSIP/022]
[6]   A note on Hermite and subelliptic operators [J].
Chang, DC ;
Tie, JZ .
ACTA MATHEMATICA SINICA-ENGLISH SERIES, 2005, 21 (04) :803-818
[7]  
Chang DC, 2001, MATH NACHR, V221, P19
[8]  
Chang DC., 2000, J. Geom. Anal., V10, P653
[9]   Quaternion H-type group and differential operator Δλ [J].
Chang Der-Chen ;
Markina, Irina .
SCIENCE IN CHINA SERIES A-MATHEMATICS, 2008, 51 (04) :523-540
[10]   Anisotropic quaternion carnot groups: Geometric analysis and green function [J].
Chang, Der-Chen ;
Markina, Irina .
ADVANCES IN APPLIED MATHEMATICS, 2007, 39 (03) :345-394