A non-conventional ergodic theorem for a nilsystem

被引:35
作者
Ziegler, T [1 ]
机构
[1] Ohio State Univ, Dept Math, Columbus, OH 43210 USA
关键词
D O I
10.1017/S0143385703000518
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We prove a non-conventional pointwise convergence theorem for a nilsystem, and give an explicit formula for the limit.
引用
收藏
页码:1357 / 1370
页数:14
相关论文
共 17 条
[1]  
BOURGAIN J, 1989, PUBL IHES, V69, P5, DOI DOI 10.1007/BF02698838
[2]  
CONZE JP, 1984, B SOC MATH FR, V112, P143
[3]  
Furstenberg H, 1996, OHIO ST U M, V5, P193
[4]   ERGODIC BEHAVIOR OF DIAGONAL MEASURES AND A THEOREM OF SZEMEREDI ON ARITHMETIC PROGRESSIONS [J].
FURSTENBERG, H .
JOURNAL D ANALYSE MATHEMATIQUE, 1977, 31 :204-256
[5]   Nonconventional ergodic averages and nilmanifolds [J].
Host, B ;
Kra, B .
ANNALS OF MATHEMATICS, 2005, 161 (01) :397-488
[6]  
Host B., COMMUNICATION
[7]  
LAZARD M, 1953, CR HEBD ACAD SCI, V236, P36
[8]   Pointwise convergence of ergodic averages for polynomial sequences of translations on a nilmanifold [J].
Leibman, A .
ERGODIC THEORY AND DYNAMICAL SYSTEMS, 2005, 25 :201-213
[9]   Polynomial sequences in groups [J].
Leibman, A .
JOURNAL OF ALGEBRA, 1998, 201 (01) :189-206
[10]   ON A NILMANIFOLD MINIMAL PARTS ASSOCIATED WITH A TRANSLATION ARE UNIQUELY ERGODIC [J].
LESIGNE, E .
ERGODIC THEORY AND DYNAMICAL SYSTEMS, 1991, 11 :379-391