On the small-scale statistics of Lagrangian turbulence

被引:62
作者
Beck, C
机构
[1] Univ Cambridge, Isaac Newton Inst Math Sci, Cambridge CB3 0EH, England
[2] Univ London Queen Mary & Westfield Coll, Sch Math Sci, London E1 4NS, England
关键词
D O I
10.1016/S0375-9601(01)00483-2
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
We provide evidence that the small-scale statistics of the acceleration of a test particle in high-Reynolds number Lagrangian turbulence is correctly described by Tsallis statistics, with entropic index q = 3/2. We present theoretical arguments why Tsallis statistics can naturally arise in Lagrangian turbulence and why at the smallest scales q = 3/2 is relevant. A generalized Heisenberg-Yaglom formula is derived from the nonextensive model. (C) 2001 Elsevier Science B.V. All rights reserved.
引用
收藏
页码:240 / 244
页数:5
相关论文
共 19 条
[1]   Axioms and uniqueness theorem for Tsallis entropy [J].
Abe, S .
PHYSICS LETTERS A, 2000, 271 (1-2) :74-79
[2]  
[Anonymous], 1974, STAT DISTRIBUTIONS
[3]   Tsallis statistics and fully developed turbulence [J].
Arimitsu, T ;
Arimitsu, N .
JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 2000, 33 (27) :L235-L241
[4]   Analysis of fully developed turbulence in terms of Tsallis statistics [J].
Arimitsu, T ;
Arimitsu, N .
PHYSICAL REVIEW E, 2000, 61 (03) :3237-3240
[5]   Application of generalized thermostatistics to fully developed turbulence [J].
Beck, C .
PHYSICA A, 2000, 277 (1-2) :115-123
[6]   Measuring nonextensitivity parameters in a turbulent Couette-Taylor flow [J].
Beck, C ;
Lewis, GS ;
Swinney, HL .
PHYSICAL REVIEW E, 2001, 63 (03) :353031-353034
[7]  
Beck C., 1993, THERMODYNAMICS CHAOT
[8]   Fluid particle accelerations in fully developed turbulence [J].
La Porta, A ;
Voth, GA ;
Crawford, AM ;
Alexander, J ;
Bodenschatz, E .
NATURE, 2001, 409 (6823) :1017-1019
[9]  
RAMOS FM, CONDMAT0010435
[10]  
Renyi A., 1970, Probability Theory