Expansion of laser-induced plume after the passage of a counter shock wave through a background gas

被引:1
作者
Higo, Akira [1 ]
Katayama, Keita [1 ]
Fukuoka, Hiroshi [2 ]
Yoshida, Takehito [3 ]
Aoki, Tamao [4 ]
Yaga, Minoru [5 ]
Umezu, Ikurou [4 ]
机构
[1] Konan Univ, Grad Sch Nat Sci, Kobe, Hyogo 6588501, Japan
[2] Natl Inst Technol, Nara Coll, Nara 6391080, Japan
[3] Anan Coll, Natl Inst Technol, Anan 7740017, Japan
[4] Konan Univ, Dept Phys, Kobe, Hyogo 6588501, Japan
[5] Univ Ryukyus, Dept Mech Syst Engn, Nishihara, Okinawa 9030213, Japan
来源
APPLIED PHYSICS A-MATERIALS SCIENCE & PROCESSING | 2020年 / 126卷 / 04期
关键词
Pulsed laser ablation; Shock wave; Plume expansion; Pulsed laser deposition; ABLATION; COLLISION;
D O I
10.1007/s00339-020-03476-8
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
Double-pulsed laser ablation with two targets and lasers in a background gas is a method to form nanoparticle complex. Effects of pulse delay between two lasers on plume expansion dynamics are discussed. The germanium and silicon targets were set parallel to each other and irradiated by two YAG lasers. The germanium target was irradiated followed by irradiation of the silicon target with delay time, t(d). We found that the expansion distance of delayed silicon plume is enhanced for 2 mu s <= t(d) <= 50 mu s, compared to that when only the silicon target is irradiated. For t(d) = 200 mu s, the expansion distance of delayed silicon plume is similar to that when only the silicon target is irradiated. We discuss the expansion dynamics of the delayed silicon plume based on the effect of the density distribution induced by the primary germanium plume. Our results indicate that the effect of primary germanium plume remains up to about t(d) = 50 mu s, and it disappears by t(d) = 200 mu s.
引用
收藏
页数:4
相关论文
共 27 条
[1]   Molecular formation in the stagnation region of colliding laser-produced plasmas [J].
Al-Shboul, K. F. ;
Hassan, S. M. ;
Harilal, S. S. .
PLASMA SOURCES SCIENCE & TECHNOLOGY, 2016, 25 (06)
[2]   Interpenetration and stagnation in colliding laser plasmas [J].
Al-Shboul, K. F. ;
Harilal, S. S. ;
Hassan, S. M. ;
Hassanein, A. ;
Costello, J. T. ;
Yabuuchi, T. ;
Tanaka, K. A. ;
Hirooka, Y. .
PHYSICS OF PLASMAS, 2014, 21 (01)
[3]  
Bauerle D., 2000, ADV TEXTS PHYS
[4]   NUMERICAL SOLUTIONS OF SPHERICAL BLAST WAVES [J].
BRODE, HL .
JOURNAL OF APPLIED PHYSICS, 1955, 26 (06) :766-775
[5]   Spectroscopic and shadowgraphic analysis of laser induced plasmas in the orthogonal double pulse pre-ablation configuration [J].
Cristoforetti, G. ;
Legnaioli, S. ;
Pardini, L. ;
Palleschi, V. ;
Salvetti, A. ;
Tognoni, E. .
SPECTROCHIMICA ACTA PART B-ATOMIC SPECTROSCOPY, 2006, 61 (03) :340-350
[6]   Role of laser pre-pulse wavelength and inter-pulse delay on signal enhancement in collinear double-pulse laser-induced breakdown spectroscopy [J].
Diwakar, P. K. ;
Harilal, S. S. ;
Freeman, J. R. ;
Hassanein, A. .
SPECTROCHIMICA ACTA PART B-ATOMIC SPECTROSCOPY, 2013, 87 :65-73
[7]   Time-resolved imaging of gas phase nanoparticle synthesis by laser ablation [J].
Geohegan, DB ;
Puretzky, AA ;
Duscher, G ;
Pennycook, SJ .
APPLIED PHYSICS LETTERS, 1998, 72 (23) :2987-2989
[8]   Formation of carbon allotrope aerosol by colliding plasmas in an inertial fusion reactor [J].
Hirooka, Y. ;
Sato, H. ;
Ishihara, K. ;
Yabuuchi, T. ;
Tanaka, K. A. .
NUCLEAR FUSION, 2014, 54 (02)
[9]   Emission characteristics and dynamics of the stagnation layer in colliding laser produced plasmas [J].
Hough, P. ;
McLoughlin, C. ;
Harilal, S. S. ;
Mosnier, J. P. ;
Costello, J. T. .
JOURNAL OF APPLIED PHYSICS, 2010, 107 (02)
[10]   Direct generation of core/shell nanoparticles from double-pulse laser ablation in a background gas [J].
Jo, Young Kyong ;
Wen, Sy-Bor .
JOURNAL OF PHYSICS D-APPLIED PHYSICS, 2011, 44 (30)