Sparse potentials with fractional Hausdorff dimension

被引:21
作者
Zlatos, A [1 ]
机构
[1] CALTECH, Pasadena, CA 91125 USA
基金
美国国家科学基金会;
关键词
schrodinger operators; sparse potentials; singular continuous spectrum; fractional dimension;
D O I
10.1016/S0022-1236(03)00180-0
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We construct non-random bounded discrete half-line Schrodinger operators which have purely singular continuous spectral measures with fractional Hausdorff dimension (in some interval of energies). To do this we use suitable sparse potentials. Our results also apply to whole line operators, as well as to certain random operators. In the latter case we prove and compute an exact dimension of the spectral measures. (C) 2003 Elsevier Inc. All rights reserved.
引用
收藏
页码:216 / 252
页数:37
相关论文
共 10 条
[1]  
CYCOON HL, 1987, SCHRODINGER OPERATOR
[2]  
FAN AH, FAST BIRKHOFF AVERAG
[3]   ON SUBORDINACY AND ANALYSIS OF THE SPECTRUM OF ONE-DIMENSIONAL SCHRODINGER-OPERATORS [J].
GILBERT, DJ ;
PEARSON, DB .
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 1987, 128 (01) :30-56
[4]   Power-law subordinacy and singular spectra I. Half-line operators [J].
Jitomirskaya, S ;
Last, Y .
ACTA MATHEMATICA, 1999, 183 (02) :171-189
[5]   Modified Prufer and EFGP transforms and the spectral analysis of one-dimensional Schrodinger operators [J].
Kiselev, A ;
Last, Y ;
Simon, B .
COMMUNICATIONS IN MATHEMATICAL PHYSICS, 1998, 194 (01) :1-45
[6]   Schrodinger operators with sparse potentials: Asymptotics of the Fourier transform of the spectral measure [J].
Krutikov, D ;
Remling, C .
COMMUNICATIONS IN MATHEMATICAL PHYSICS, 2001, 223 (03) :509-532
[7]   Eigenfunctions, transfer matrices, and absolutely continuous spectrum of one-dimensional Schrodinger operators [J].
Last, Y ;
Simon, B .
INVENTIONES MATHEMATICAE, 1999, 135 (02) :329-367
[8]   SINGULAR CONTINUOUS MEASURES IN SCATTERING THEORY [J].
PEARSON, DB .
COMMUNICATIONS IN MATHEMATICAL PHYSICS, 1978, 60 (01) :13-36
[9]   PROPERTIES OF RIESZ PRODUCTS [J].
PEYRIERE, J .
ANNALES DE L INSTITUT FOURIER, 1975, 25 (02) :127-169
[10]  
SIMON B, 1995, CRM P LECT NOTES, V8, P109