ON THE SOLUTIONS FOR A BENNEY-LIN TYPE EQUATION

被引:4
作者
Coclite, Giuseppe Maria [1 ]
di Ruvo, Lorenzo [2 ]
机构
[1] Politecn Bari, Dipartimento Meccan Matemat & Management, Via E Orabona 4, I-70125 Bari, Italy
[2] Univ Bari, Dipartimento Matemat, Via E Orabona 4, I-70125 Bari, Italy
来源
DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS-SERIES B | 2022年 / 27卷 / 11期
关键词
Cauchy problem; Existence; Uniqueness; Stability; Benney-Lin type equation; TRAVELING-WAVE SOLUTIONS; KURAMOTO-SIVASHINSKY EQUATION; SINGULAR LIMIT PROBLEM; LOCAL WELL-POSEDNESS; KAWAHARA EQUATION; CONSERVATION-LAWS; SOBOLEV SPACES; LOW REGULARITY; CAUCHY-PROBLEM; GLOBAL EXISTENCE;
D O I
10.3934/dcdsb.2022024
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
The Benney-Lin equation describes the evolution of long waves in various problems in fluid dynamics. In this paper, we prove the well-posedness of the Cauchy problem, associated with this equation.
引用
收藏
页码:6865 / 6883
页数:19
相关论文
共 94 条