Dependable Data-based Design of Embedded Model Predictive Control

被引:0
作者
Schmid, Patrick [1 ]
Ebel, Henrik [1 ]
Eberhard, Peter [1 ]
机构
[1] Univ Stuttgart, Inst Engn & Computat Mech, Paffenwaldring 9, D-70569 Stuttgart, Germany
来源
2022 EUROPEAN CONTROL CONFERENCE (ECC) | 2022年
关键词
STABILITY; ALGORITHM;
D O I
暂无
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Implementations of model predictive control on resource-limited embedded devices usually do not follow theoretical schemes which guarantee stability by design because of real-time and feasibility issues or conservativeness. However, a dependable design is essential for safety-critical systems. This work proposes a dependable model predictive control system architecture, which uses an offline computed set of states declared to be dependable. A method is introduced for computing a classification function of such sets based on binary trees and convex hulls. The approach is tailored for embedded hardware limited in computing capacity and memory. Finally, the approach is applied to a realistic model of the safety-critical magnet control system of the magnetic levitation vehicle Transrapid and deployed on a microcontroller.
引用
收藏
页码:859 / 866
页数:8
相关论文
共 18 条
  • [1] In-Vehicle Realization of Nonlinear MPC for Gasoline Two-Stage Turbocharging Airpath Control
    Albin, Thivaharan
    Ritter, Dennis
    Liberda, Norman
    Quirynen, Rien
    Diehl, Moritz
    [J]. IEEE TRANSACTIONS ON CONTROL SYSTEMS TECHNOLOGY, 2018, 26 (05) : 1606 - 1618
  • [2] CasADi: a software framework for nonlinear optimization and optimal control
    Andersson, Joel A. E.
    Gillis, Joris
    Horn, Greg
    Rawlings, James B.
    Diehl, Moritz
    [J]. MATHEMATICAL PROGRAMMING COMPUTATION, 2019, 11 (01) : 1 - 36
  • [3] The Quickhull algorithm for convex hulls
    Barber, CB
    Dobkin, DP
    Huhdanpaa, H
    [J]. ACM TRANSACTIONS ON MATHEMATICAL SOFTWARE, 1996, 22 (04): : 469 - 483
  • [4] The explicit linear quadratic regulator for constrained systems
    Bemporad, A
    Morari, M
    Dua, V
    Pistikopoulos, EN
    [J]. AUTOMATICA, 2002, 38 (01) : 3 - 20
  • [5] Output-Tracking Quantized Explicit Nonlinear Model Predictive Control Using Multiclass Support Vector Machines
    Chakrabarty, Ankush
    Buzzard, Gregery T.
    Zak, Stanislaw H.
    [J]. IEEE TRANSACTIONS ON INDUSTRIAL ELECTRONICS, 2017, 64 (05) : 4130 - 4138
  • [6] Support Vector Machine Informed Explicit Nonlinear Model Predictive Control Using Low-Discrepancy Sequences
    Chakrabarty, Ankush
    Dinh, Vu
    Corless, Martin J.
    Rundell, Ann E.
    Zak, Stanislaw H.
    Buzzard, Gregery T.
    [J]. IEEE TRANSACTIONS ON AUTOMATIC CONTROL, 2017, 62 (01) : 135 - 148
  • [7] A quasi-infinite horizon nonlinear model predictive control scheme with guaranteed stability
    Chen, H
    Allgower, F
    [J]. AUTOMATICA, 1998, 34 (10) : 1205 - 1217
  • [8] Dellnitz M., 2012, PROGR IND MATH ECMI, V17, P113
  • [9] Stability and Incremental Improvement of Suboptimal MPC Without Terminal Constraints
    Graichen, Knut
    Kugi, Andreas
    [J]. IEEE TRANSACTIONS ON AUTOMATIC CONTROL, 2010, 55 (11) : 2576 - 2580
  • [10] Grancharova A, 2012, LECT NOTES CONTR INF, V429, P1, DOI 10.1007/978-3-642-28780-0