CONVERGENCE ANALYSIS OF A PROJECTED GRADIENT METHOD FOR MULTIOBJECTIVE OPTIMIZATION PROBLEMS

被引:5
|
作者
Zhao, Xiaopeng [1 ]
Sun, Qiaoyue [1 ]
Liu, Liya [2 ]
Cho, Sun Young [3 ]
机构
[1] Tiangong Univ, Sch Math Sci, Tianjin 300387, Peoples R China
[2] Southwest Univ, Sch Math & Stat, Chongqing 400715, Peoples R China
[3] China Med Univ, China Med Univ Hosp, Res Ctr Interneural Comp, Taichung 40402, Taiwan
来源
关键词
Linear convergence; Multiobjective optimization; Projected gradient method; Pareto opti-mality; VECTOR OPTIMIZATION; VARIANCE;
D O I
10.23952/jnva.5.2021.6.06
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, we consider a projected gradient method for constrained multiobjective opti-mization problems. Under suitable assumptions, we show that the sequence generated by the method converges to a Pareto stationary point (or a weak Pareto optimal point) of the problem when the mul-tiobjective function is quasiconvex (or pseudoconvex). Furthermore, in the case that the multiobjective function is convex, by using some approximate conditions that are imposed on the gradients of the ob-jective functions and the search directions, we obtain the linear convergence result for this method.
引用
收藏
页码:929 / 938
页数:10
相关论文
共 50 条
  • [1] Convergence analysis of a nonmonotone projected gradient method for multiobjective optimization problems
    N. S. Fazzio
    M. L. Schuverdt
    Optimization Letters, 2019, 13 : 1365 - 1379
  • [2] Convergence analysis of a nonmonotone projected gradient method for multiobjective optimization problems
    Fazzio, N. S.
    Schuverdt, M. L.
    OPTIMIZATION LETTERS, 2019, 13 (06) : 1365 - 1379
  • [3] CONVERGENCE ANALYSIS OF A NONMONOTONE PROJECTED GRADIENT METHOD FOR MULTIOBJECTIVE OPTIMIZATION PROBLEMS ON RIEMANNIAN MANIFOLDS
    Li, Xiaobo
    Lal, Manish Krishan
    JOURNAL OF NONLINEAR AND CONVEX ANALYSIS, 2022, 23 (08) : 1673 - 1691
  • [4] Convergence of the projected gradient method for quasiconvex multiobjective optimization
    Bello Cruz, J. Y.
    Lucambio Perez, L. R.
    Melo, J. G.
    NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2011, 74 (16) : 5268 - 5273
  • [5] Linear convergence of a nonmonotone projected gradient method for multiobjective optimization
    Zhao, Xiaopeng
    Yao, Jen-Chih
    JOURNAL OF GLOBAL OPTIMIZATION, 2022, 82 (03) : 577 - 594
  • [6] CONVERGENCE OF A NONMONOTONE PROJECTED GRADIENT METHOD FOR NONCONVEX MULTIOBJECTIVE OPTIMIZATION
    Zhao, Xiaopeng
    Jolaoso, Lateef O.
    Shehu, Yekini
    Yao, Jen-chih
    JOURNAL OF NONLINEAR AND VARIATIONAL ANALYSIS, 2021, 5 (03): : 441 - 457
  • [7] Linear convergence of a nonmonotone projected gradient method for multiobjective optimization
    Xiaopeng Zhao
    Jen-Chih Yao
    Journal of Global Optimization, 2022, 82 : 577 - 594
  • [8] LINEAR CONVERGENCE ANALYSIS FOR A NONMONOTONE PROJECTED GRADIENT ALGORITHM SOLVING MULTIOBJECTIVE OPTIMIZATION PROBLEMS
    Zhao, X. P.
    Jolaoso, L. O.
    Shehu, Y.
    Yao, J. -Ch.
    JOURNAL OF NONLINEAR AND CONVEX ANALYSIS, 2022, 23 (11) : 2663 - 2675
  • [9] On the convergence analysis of a proximal gradient method for multiobjective optimization
    Zhao, Xiaopeng
    Ghosh, Debdas
    Qin, Xiaolong
    Tammer, Christiane
    Yao, Jen-Chih
    TOP, 2024, : 102 - 132
  • [10] On the convergence of the projected gradient method for vector optimization
    Fukuda, Ellen H.
    Grana Drummond, L. M.
    OPTIMIZATION, 2011, 60 (8-9) : 1009 - 1021