p Reservoir Computing Approach to Quantum State Measurement

被引:27
作者
Angelatos, Gerasimos [1 ]
Khan, Saeed A. [1 ]
Tureci, Hakan E. [1 ]
机构
[1] Princeton Univ, Dept Elect Engn, Princeton, NJ 08544 USA
基金
加拿大自然科学与工程研究理事会;
关键词
SUPERCONDUCTING QUBITS; ENTANGLEMENT;
D O I
10.1103/PhysRevX.11.041062
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
Efficient quantum state measurement is important for maximizing the extracted information from a quantum system. For multiqubit quantum processors, in particular, the development of a scalable architecture for rapid and high-fidelity readout remains a critical unresolved problem. Here we propose reservoir computing as a resource-efficient solution to quantum measurement of superconducting multiqubit systems. We consider a small network of Josephson parametric oscillators, which can be implemented with minimal device overhead and in the same platform as the measured quantum system. We theoretically analyze the operation of such a device as a reservoir computer to classify stochastic timedependent signals subject to quantum statistical features. We apply this reservoir computer to the task of multinomial classification of measurement trajectories from joint multiqubit readout. For a 2-qubit dispersive measurement under realistic conditions we demonstrate a classification fidelity reliably exceeding that of an optimal linear filter using only 2-5 reservoir nodes, while simultaneously requiring far less calibration data-as little as a few shots per state. We understand this remarkable performance through an analysis of the network dynamics and develop an intuitive picture of reservoir processing generally. Finally, we demonstrate how to operate this device to perform 2-qubit state tomography and continuous parity monitoring with equal effectiveness and ease of calibration. This reservoir processor avoids computationally intensive training common to other machine learning frameworks and can be implemented as an integrated cryogenic superconducting device for low-latency processing of quantum signals on the computational edge.
引用
收藏
页数:18
相关论文
共 64 条
[1]  
[Anonymous], PRACTICE MICROWAVE S
[2]   Information processing using a single dynamical node as complex system [J].
Appeltant, L. ;
Soriano, M. C. ;
Van der Sande, G. ;
Danckaert, J. ;
Massar, S. ;
Dambre, J. ;
Schrauwen, B. ;
Mirasso, C. R. ;
Fischer, I. .
NATURE COMMUNICATIONS, 2011, 2
[3]   Photon-Mediated Interactions: A Scalable Tool to Create and Sustain Entangled States of N Atoms [J].
Aron, Camille ;
Kulkarni, Manas ;
Tuereci, Hakan E. .
PHYSICAL REVIEW X, 2016, 6 (01)
[4]   Improved Superconducting Qubit Readout by Qubit-Induced Nonlinearities [J].
Boissonneault, Maxime ;
Gambetta, J. M. ;
Blais, Alexandre .
PHYSICAL REVIEW LETTERS, 2010, 105 (10)
[6]  
Bompas S., 2020, CHAOS, V30, P113118, DOI [10.1063/5.0021264, DOI 10.1063/5.0021264]
[7]   Quantum nondemolition readout using a Josephson bifurcation amplifier [J].
Boulant, N. ;
Ithier, G. ;
Meeson, P. ;
Nguyen, F. ;
Vion, D. ;
Esteve, D. ;
Siddiqi, I. ;
Vijay, R. ;
Rigetti, C. ;
Pierre, F. .
PHYSICAL REVIEW B, 2007, 76 (01)
[8]  
Canaday D., ARXIV201002285
[9]   Rapid time series prediction with a hardware-based reservoir computer [J].
Canaday, Daniel ;
Griffith, Aaron ;
Gauthier, Daniel J. .
CHAOS, 2018, 28 (12)
[10]   Temporal Information Processing on Noisy Quantum Computers [J].
Chen, Jiayin ;
Nurdin, Hendra I. ;
Yamamoto, Naoki .
PHYSICAL REVIEW APPLIED, 2020, 14 (02)