OSCILLATION OF CERTAIN NONLINEAR SECOND-ORDER DAMPED DELAY DYNAMIC EQUATIONS ON TIME SCALES

被引:0
|
作者
Chen, Da-Xue [1 ]
Liu, Guang-Hui [1 ]
Long, Yu-Hua [1 ]
机构
[1] Hunan Inst Engn, Coll Sci, Xiangtan 411104, Peoples R China
来源
UNIVERSITY POLITEHNICA OF BUCHAREST SCIENTIFIC BULLETIN-SERIES A-APPLIED MATHEMATICS AND PHYSICS | 2011年 / 73卷 / 01期
关键词
oscillation; nonlinear second-order damped delay dynamic equation; time scale; ASYMPTOTIC-BEHAVIOR; CRITERIA;
D O I
暂无
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
The paper present some oscillation criteria for the nonlinear second-order damped delay dynamic equation (r(t)vertical bar x(Delta)(t)vertical bar(beta-1)x(Delta)(t))(Delta)+p(t)vertical bar x(Delta sigma)(t)vertical bar beta-1x(Delta sigma)(t) + q(t)f(x(tau(t))) = 1 on an arbitrary time scale T, where beta > 0 is a constant, sup T = infinity, sigma(t) := inf {s epsilon T : s > t} is the forward jump operator on T, and x(Delta sigma) := x(Delta) o sigma. Our results improve and extend some known results in which beta > 0 is a quotient of odd positive integers. Examples are given to illustrate our main results.
引用
收藏
页码:71 / 88
页数:18
相关论文
共 50 条
  • [1] Oscillation of second-order nonlinear delay dynamic equations on time scales
    Zhang, Quanxin
    Gao, Li
    Wang, Lei
    COMPUTERS & MATHEMATICS WITH APPLICATIONS, 2011, 61 (08) : 2342 - 2348
  • [2] Oscillation of second-order damped dynamic equations on time scales
    Saker, Samir H.
    Agarwal, Ravi P.
    O'Regan, Donal
    JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2007, 330 (02) : 1317 - 1337
  • [3] Oscillation for Second-Order Nonlinear Delay Dynamic Equations on Time Scales
    Han, Zhenlai
    Li, Tongxing
    Sun, Shurong
    Zhang, Chenghui
    ADVANCES IN DIFFERENCE EQUATIONS, 2009,
  • [4] Oscillation of Second-Order Nonlinear Delay Dynamic Equations on Time Scales
    Song, X.
    Zhang, Q. X.
    PROCEEDINGS OF THE 2015 INTERNATIONAL CONFERENCE ON ELECTRICAL, AUTOMATION AND MECHANICAL ENGINEERING (EAME 2015), 2015, 13 : 827 - 830
  • [5] Oscillation Results for Second-Order Nonlinear Damped Dynamic Equations on Time Scales
    Qiu, Yang-Cong
    Wang, Qi-Ru
    ABSTRACT AND APPLIED ANALYSIS, 2014,
  • [6] Oscillation of second-order nonlinear delay dynamic equations on time scales
    Zhang, BG
    Zhu, SL
    COMPUTERS & MATHEMATICS WITH APPLICATIONS, 2005, 49 (04) : 599 - 609
  • [7] Oscillation of second-order delay dynamic equations on time scales
    Sun S.
    Han Z.
    Zhang C.
    Journal of Applied Mathematics and Computing, 2009, 30 (1-2) : 459 - 468
  • [8] Oscillation of second-order nonlinear delay dynamic equations on time scales with a nonpositive neutral term
    Agwa, H. A.
    Khodier, A. M. M.
    Hamam, M.
    INTERNATIONAL JOURNAL OF DYNAMICAL SYSTEMS AND DIFFERENTIAL EQUATIONS, 2022, 12 (06) : 477 - 492
  • [9] Oscillation for second-order half-linear delay damped dynamic equations on time scales
    Li, Jimeng
    Yang, Jiashan
    ADVANCES IN DIFFERENCE EQUATIONS, 2019, 2019 (1)
  • [10] Nonlinear oscillation of second-order dynamic equations on time scales
    Anderson, Douglas R.
    Zafer, A.
    APPLIED MATHEMATICS LETTERS, 2009, 22 (10) : 1591 - 1597