STABILITY AND COMPACTNESS FOR COMPLETE f-MINIMAL SURFACES

被引:51
作者
Cheng, Xu [1 ]
Mejia, Tito [1 ]
Zhou, Detang [1 ]
机构
[1] Univ Fed Fluminense, Inst Matemat & Estat, BR-24020 Niteroi, RJ, Brazil
关键词
RICCI SOLITONS; EIGENVALUE; SHRINKERS; GEOMETRY;
D O I
10.1090/S0002-9947-2015-06207-2
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Let (M, (g) over bar, e(-f) d mu) be a complete metric measure space with Bakry-Emery Ricci curvature bounded below by a positive constant. We prove that in M there is no complete two-sided L-f -stable immersed f-minimal hypersurface with finite weighted volume. Further, if M is a 3-manifold, we prove a smooth compactness theorem for the space of complete embedded f-minimal surfaces in M with the uniform upper bounds of genus and weighted volume, which generalizes the compactness theorem for complete self-shrinkers in R-3 by Colding-Minicozzi.
引用
收藏
页码:4041 / 4059
页数:19
相关论文
共 14 条
[1]  
Cao HD, 2010, J DIFFER GEOM, V85, P175
[2]   EIGENVALUE ESTIMATE AND COMPACTNESS FOR CLOSED f-MINIMAL SURFACES [J].
Cheng, Xu ;
Mejia, Tito ;
Zhou, Detang .
PACIFIC JOURNAL OF MATHEMATICS, 2014, 271 (02) :347-367
[3]   VOLUME ESTIMATE ABOUT SHRINKERS [J].
Cheng, Xu ;
Zhou, Detang .
PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 2013, 141 (02) :687-696
[4]  
Colding T.H., 1998, CONT MATH, V258, P107, DOI DOI 10.1090/CONM/258/04058
[5]  
COLDING T. H., 2011, GRADUATE STUDIES MAT, V121
[6]  
Colding TH, 2002, INT MATH RES NOTICES, V2002, P291
[7]   Smooth compactness of self-shrinkers [J].
Colding, Tobias H. ;
Minicozzi, William P., II .
COMMENTARII MATHEMATICI HELVETICI, 2012, 87 (02) :463-475
[8]   Generic mean curvature flow I; generic singularities [J].
Colding, Tobias H. ;
Minicozzi, William P., II .
ANNALS OF MATHEMATICS, 2012, 175 (02) :755-833
[9]  
Ding Q, 2013, ASIAN J MATH, V17, P443
[10]  
Morgan F., 2005, NOT AM MATH SOC, V53, P853