Measurement of optimal flow rate in gradient elution liquid chromatography

被引:2
|
作者
Foster, Samuel W. [1 ]
Wright, Nicholas [1 ]
Grinias, James P. [1 ]
Blumberg, Leonid M. [2 ]
机构
[1] Rowan Univ, Dept Chem & Biochem, 201 Mullica Hill Rd, Glassboro, NJ 08028 USA
[2] Advachrom, POB 1243, Wilmington, DE 19801 USA
基金
美国国家科学基金会;
关键词
Optimal flow rate; Separation; Separation capacity; Method translation; SEPARATION PERFORMANCE; KINETIC PERFORMANCE; METHOD-TRANSLATION; PLATE HEIGHT; PEAK WIDTH; COLUMNS; EFFICIENCY; METRICS; SPEED; SIZE;
D O I
10.1016/j.chroma.2021.462645
中图分类号
Q5 [生物化学];
学科分类号
071010 ; 081704 ;
摘要
Method development in gradient LC relies upon the selection of a solvent time program and a mobile phase flow rate. The flow rate, optimal for gradient separation cannot be inherently predicted by the isocratic value optimal for a given analyte, and rather should be identified independently to ensure the highest separation performance of gradient analysis. The optimal flow rate (F-opt) is defined herein as the solvent volumetric flow rate (F) maximizing the separation (Delta(s)) of a predetermined peak-pair or the separation capacity (s(c)) of the entire LC analysis. The theoretical background and the experimental technique of measurement of F opt in gradient elution analysis were considered and experimentally demonstrated. The technique of measuring F(op)t is based on translatable changes of F where the product Ft(G) (t(G) is the gradient time) was the same for all values of F. The F-opt was found as F corresponding to the maximum in Delta(s) or in s(c). (C) 2021 Elsevier B.V. All rights reserved.
引用
收藏
页数:7
相关论文
共 50 条
  • [21] Rebirth of recycling liquid chromatography with modern chromatographic columns : Extension to gradient elution
    Gritti, Fabrice
    JOURNAL OF CHROMATOGRAPHY A, 2021, 1653
  • [22] Some insights on the description of gradient elution in reversed-phase liquid chromatography
    Jose Baeza-Baeza, Juan
    Celia Garcia-Alvarez-Coque, Maria
    JOURNAL OF SEPARATION SCIENCE, 2014, 37 (17) : 2269 - 2277
  • [23] Chromatographic models to predict the elution of ionizable analytes by organic modifier gradient in reversed phase liquid chromatography
    Andres, Axel
    Tellez, Adolfo
    Roses, Marti
    Bosch, Elisabeth
    JOURNAL OF CHROMATOGRAPHY A, 2012, 1247 : 71 - 80
  • [24] Retention prediction of a set of amino acids under gradient elution conditions in hydrophilic interaction liquid chromatography
    Gika, Helen
    Theodoridis, Georgios
    Mattivi, Fulvio
    Vrhovsek, Urska
    Pappa-Louisi, Adriani
    JOURNAL OF SEPARATION SCIENCE, 2012, 35 (03) : 376 - 383
  • [25] Theory of Gradient Elution Liquid Chromatography with Linear Solvent Strength: Part 2. Peak Width Formation
    Blumberg, Leonid M.
    CHROMATOGRAPHIA, 2014, 77 (1-2) : 189 - 197
  • [26] Hydrophilic interaction ultra performance liquid chromatography retention prediction under gradient elution
    Gika, Helen
    Theodoridis, Georgios
    Mattivi, Fulvio
    Vrhovsek, Urska
    Pappa-Louisi, Adriani
    ANALYTICAL AND BIOANALYTICAL CHEMISTRY, 2012, 404 (03) : 701 - 709
  • [27] Influence of Microstructure on the Elution Behavior of Gradient Copolymers in Different Modes of Liquid Interaction Chromatography
    Zdovc, Blaz
    Li, Heng
    Zhao, Junpeng
    Pahovnik, David
    Agar, Ema Z.
    ANALYTICAL CHEMISTRY, 2022, 94 (22) : 7844 - 7852
  • [28] A graphical method for understanding the kinetics of peak capacity production in gradient elution liquid chromatography
    Wang, Xiaoli
    Stoll, Dwight R.
    Carr, Peter W.
    Schoenmakers, Peter J.
    JOURNAL OF CHROMATOGRAPHY A, 2006, 1125 (02) : 177 - 181
  • [29] Purification of organic acids by chromatography: Adsorption isotherms and impact of elution flow rate
    Blanc, Claire-Line
    Theoleyre, Marc-Andre
    Lutin, Florence
    Pareau, Dominique
    Stambouli, Moncef
    SEPARATION AND PURIFICATION TECHNOLOGY, 2015, 141 : 105 - 112
  • [30] Optimal heating rate in constant pressure and constant flow gas chromatography
    Merrick, Mark
    Blumberg, Leonid M.
    JOURNAL OF SEPARATION SCIENCE, 2021, 44 (17) : 3254 - 3267