End-to-end music source separation: is it possible in the waveform domain?

被引:24
作者
Lluis, Francesc [1 ]
Pons, Jordi [1 ]
Serra, Xavier [1 ]
机构
[1] Univ Pompeu Fabra, Mus Technol Grp, Barcelona, Spain
来源
INTERSPEECH 2019 | 2019年
关键词
source separation; end-to-end learning;
D O I
10.21437/Interspeech.2019-1177
中图分类号
R36 [病理学]; R76 [耳鼻咽喉科学];
学科分类号
100104 ; 100213 ;
摘要
Most of the currently successful source separation techniques use the magnitude spectrogram as input, and are therefore by default omitting part of the signal: the phase. To avoid omitting potentially useful information, we study the viability of using end-to-end models for music source separation - which take into account all the information available in the raw audio signal, including the phase. Although during the last decades end-to-end music source separation has been considered almost unattainable, our results confirm that waveform-based models can perform similarly (if not better) than a spectrogram-based deep learning model. Namely: a Wavenet-based model we propose and Wave-U-Net can outperform DeepConvSep, a recent spectrogram-based deep learning model.
引用
收藏
页码:4619 / 4623
页数:5
相关论文
共 31 条
[1]  
[Anonymous], 2017, ARXIV170607162
[2]  
[Anonymous], 2014, Proceedings of the 15th International Society for Music Information Retrieval Conference, DOI [10.5281/zenodo.1415678, DOI 10.5281/ZENODO.1415678]
[3]  
Blumensath T., 2004, ICASSP
[4]   Monoaural Audio Source Separation Using Deep Convolutional Neural Networks [J].
Chandna, Pritish ;
Miron, Marius ;
Janer, Jordi ;
Gomez, Emilia .
LATENT VARIABLE ANALYSIS AND SIGNAL SEPARATION (LVA/ICA 2017), 2017, 10169 :258-266
[5]  
Dubey M., 2017, ARXIV171100913
[6]  
Dubnov S., 2002, AES C
[7]  
Fevotte C., 2005, BSS_EVAL Toolbox User Guide-Revision 2.0
[8]   Raw Multi-Channel Audio Source Separation using Multi-Resolution Convolutional Auto-Encoders [J].
Grais, Emad M. ;
Ward, Dominic ;
Plumbley, Mark D. .
2018 26TH EUROPEAN SIGNAL PROCESSING CONFERENCE (EUSIPCO), 2018, :1577-1581
[9]   Independent component analysis:: algorithms and applications [J].
Hyvärinen, A ;
Oja, E .
NEURAL NETWORKS, 2000, 13 (4-5) :411-430
[10]  
Jang G.-J., 2003, J MACH LEARN RES, V4, P1365