XPS structural studies of nano-composite non-platinum electrocatalysts for polymer electrolyte fuel cells

被引:159
作者
Artyushkova, Kateryna [1 ]
Levendosky, Stephen [1 ]
Atanassov, Plamen [1 ]
Fulghum, Julia [1 ]
机构
[1] Univ New Mexico, Dept Chem & Nucl Engn, Albuquerque, NM 87131 USA
基金
美国国家科学基金会;
关键词
non-platinum electrocatalysts; structural studies; XPS; multivariate analysis; PCA;
D O I
10.1007/s11244-007-9002-y
中图分类号
O69 [应用化学];
学科分类号
081704 ;
摘要
The chemical structure of non-platinum electrocatalysts obtained from cobalt porphyrins (CoTMPP or CoTPP) by pyrolysis is investigated by X-ray Photoelectron Spectroscopy (XPS). The catalysts represent highly dispersed, self-supported nano-composites that demonstrate electrocatalytic performance for oxygen reduction and practically no activity in methanol electro-oxidation. High-resolution Co2p, C1s, N1s and O1s XPS spectra acquired from precursors and electrocatalysts pyrolyzed at various experimental conditions were curve-fit using (a) individual peaks of constrained width and shape as well as (b) experimentally obtained photopeaks from the precursor with additional peaks required for a complete curve fit. Principal Component Analysis (PCA) applied to quantitative results from the curve-fits of both types of spectra facilitates visualization and identification of the chemical species that are formed or destroyed, and simplifies evaluation of critical correlations. As a result of these studies it is established that the catalyst is a nano-composite of highly dispersed pyropolymer with some remaining N (x) -centers inserted into a graphite-like matrix. Approximately 50% of the metal is distributed as Co2+, associated with N-4-centers. The remaining cobalt is present in crystallites of metallic Co. A thin layer of CoO coats these metallic cobalt phases. The developed methodology, described herein, combines model curve-fits and principal component analysis (PCA), resulting in a quantitative and unambiguous understanding of the chemical composition and structure of complex electrocatalysts.
引用
收藏
页码:263 / 275
页数:13
相关论文
共 28 条