Preparation of Magnetic Iron Oxide Nanoparticles for Hyperthermia of Cancer in a FeCl2-NaNO3-NaOH Aqueous System

被引:32
作者
Li, Zhixia [1 ]
Kawashita, Masakazu [1 ]
Araki, Norio [2 ]
Mitsumori, Michihide [3 ]
Hiraoka, Masahiro [3 ]
Doi, Masaaki [4 ]
机构
[1] Tohoku Univ, Grad Sch Biomed Engn, Sendai, Miyagi 9808579, Japan
[2] Kyoto Med Ctr, Natl Hosp Org, Kyoto 6128555, Japan
[3] Kyoto Univ, Grad Sch Med, Kyoto 6068507, Japan
[4] Tohoku Univ, Grad Sch Engn, Sendai, Miyagi 9808579, Japan
关键词
magnetic iron oxide nanoparticles; oxidation-precipitation; initial molecular ratio of reactant; heating efficiency; hyperthermia of cancer; SOLID-STATE SYNTHESIS; MRI CONTRAST AGENT; GREEN-RUST; FE3O4; NANOPARTICLES; FERROUS HYDROXIDE; PRECIPITATION; MECHANISM; FUNCTIONALIZATION; TEMPERATURE; REDUCTION;
D O I
10.1177/0885328209351136
中图分类号
R318 [生物医学工程];
学科分类号
0831 ;
摘要
Magnetic iron oxide nanoparticles (MIONPs) were synthesized in a FeCl2-NaNO3-NaOH aqueous system under various initial Fe2+/NO3- molar ratios (alpha) and Fe2+/OH- molar ratios (beta) in order to clarify the effects of the initial molar ratio of reactants on the reaction mechanism. The Fe2+/NO3-/OH- molar ratio of 3 : 1 : 5 led to the formation of magnetic nanoparticles mainly composed of magnetite (Fe3O4) and maghemite (gamma-Fe2O3). The 36 nm sized gamma-Fe2O3 and 413 nm sized Fe3O4 were obtained by changing the order in which NaNO3 was added to a NaOH solution. The in vitro heat generations of the resulting MIONPs in an agar phantom were measured under an alternating magnetic field (100 kHz, 23.9 kA/m). The temperature rise (Delta T) of the agar phantom for the 36 nm sized gamma-Fe2O3 was 55 degrees C in the first 140 s, with a concentration of 58 mg Fe/mL. Our results showed that it is possible to prepare MIONPs with high heating efficiencies under optimal conditions using the present method.
引用
收藏
页码:643 / 661
页数:19
相关论文
共 43 条
[21]  
MA M, 2004, J MAGN MAGN MATER, V311, P193
[22]   HIGH-GRADIENT MAGNETIC CELL-SEPARATION WITH MACS [J].
MILTENYI, S ;
MULLER, W ;
WEICHEL, W ;
RADBRUCH, A .
CYTOMETRY, 1990, 11 (02) :231-238
[23]   MECHANISM OF FORMATION OF IRON-OXIDE AND OXYHYDROXIDES IN AQUEOUS-SOLUTIONS AT ROOM-TEMPERATURE [J].
MISAWA, T ;
HASHIMOTO, K ;
SHIMODAIRA, S .
CORROSION SCIENCE, 1974, 14 (02) :131-149
[24]   DEVELOPMENT OF INTRAARTERIAL HYPERTHERMIA USING A DEXTRAN-MAGNETITE COMPLEX [J].
MITSUMORI, M ;
HIRAOKA, M ;
SHIBATA, T ;
OKUNO, Y ;
MASUNAGA, S ;
KOISHI, M ;
OKAJIMA, K ;
NAGATA, Y ;
NISHIMURA, Y ;
ABE, M ;
OHURA, K ;
HASEGAWA, M ;
NAGAE, H ;
EBISAWA, Y .
INTERNATIONAL JOURNAL OF HYPERTHERMIA, 1994, 10 (06) :785-793
[25]   Effect of ferrous/ferric ions molar ratio on reaction mechanism for hydrothermal synthesis of magnetite nanoparticles [J].
Mizutani, N. ;
Iwasaki, T. ;
Watano, S. ;
Yanagida, T. ;
Tanaka, H. ;
Kawai, T. .
BULLETIN OF MATERIALS SCIENCE, 2008, 31 (05) :713-717
[26]   Preparation of size-controlled (30-100 nm) magnetite nanoparticles for biomedical applications [J].
Nishio, K. ;
Ikeda, M. ;
Gokon, N. ;
Tsubouchi, S. ;
Narimatsu, H. ;
Mochizuki, Y. ;
Sakamoto, S. ;
Sandhu, A. ;
Abe, M. ;
Handa, H. .
JOURNAL OF MAGNETISM AND MAGNETIC MATERIALS, 2007, 310 (02) :2408-2410
[27]   Functionalization and peptide-based delivery of magnetic nanoparticles as an intracellular MRI contrast agent [J].
Nitin, N ;
LaConte, LEW ;
Zurkiya, O ;
Hu, X ;
Bao, G .
JOURNAL OF BIOLOGICAL INORGANIC CHEMISTRY, 2004, 9 (06) :706-712
[28]   THE MECHANISM OF OXIDATION OF FERROUS HYDROXIDE IN SULFATED AQUEOUS-MEDIA - IMPORTANCE OF THE INITIAL RATIO OF THE REACTANTS [J].
OLOWE, AA ;
GENIN, JMR .
CORROSION SCIENCE, 1991, 32 (09) :965-984
[29]   Magnetic relaxation switches capable of sensing molecular interactions [J].
Perez, JM ;
Josephson, L ;
O'Loughlin, T ;
Högemann, D ;
Weissleder, R .
NATURE BIOTECHNOLOGY, 2002, 20 (08) :816-820
[30]   HYDROTHERMAL PREPARATION AND CHARACTERIZATION OF ULTRAFINE MAGNETITE POWDERS [J].
QIAN, Y ;
XIE, Y ;
HE, C ;
LI, J ;
CHEN, Z .
MATERIALS RESEARCH BULLETIN, 1994, 29 (09) :953-957