Combining Data Augmentations for CNN-Based Voice Command Recognition

被引:7
作者
Azarang, Arian [1 ]
Hansen, John [1 ]
Kehtarnavaz, Nasser [1 ]
机构
[1] Univ Texas Dallas, Dept Elect & Comp Engn, Richardson, TX 75080 USA
来源
2019 12TH INTERNATIONAL CONFERENCE ON HUMAN SYSTEM INTERACTION (HSI) | 2019年
关键词
Combining data augmentation methods for voice command recognition; CNN-based voice command recognition; voice command human interaction systems; CONVOLUTIONAL NEURAL-NETWORKS;
D O I
10.1109/hsi47298.2019.8942638
中图分类号
TP3 [计算技术、计算机技术];
学科分类号
0812 ;
摘要
This paper presents combining two data augmentation methods involving speed perturbation and room impulse response reverberation for the purpose of improving the generalization capability of convolutional neural networks when used for voice command recognition. Speed perturbation generates voice command variations caused by shorter or longer time durations of commands spoken by different speakers. Room impulse response reverberation generates voice command variations caused by reflected sound paths. The combination of these two augmentation methods is presented in this paper by examining a public domain dataset of voice commands. The experimental results based on the performance metric of word error rate indicate the improvement in voice command recognition rates when combining these data augmentation methods relative to using each augmentation method individually.
引用
收藏
页码:17 / 21
页数:5
相关论文
共 50 条
  • [21] DEVELOPMENT OF CNN-BASED VISUAL RECOGNITION AIR CONDITIONER FOR SMART BUILDINGS
    Huang, Qian
    Hao, Kangli
    JOURNAL OF INFORMATION TECHNOLOGY IN CONSTRUCTION, 2020, 25 : 361 - 373
  • [22] Efficient Caoshu Character Recognition Scheme and Service Using CNN-Based Recognition Model Optimization
    Hong, Boseon
    Kim, Bongjae
    SENSORS, 2020, 20 (16) : 1 - 19
  • [23] Knock Knock, Who's There: Facial Recognition using CNN-based Classifiers
    Sun, Qiyu
    Redei, Alexander
    INTERNATIONAL JOURNAL OF ADVANCED COMPUTER SCIENCE AND APPLICATIONS, 2022, 13 (01) : 9 - 16
  • [24] Analysis of CNN-based Speech Recognition System using Raw Speech as Input
    Palaz, Dimitri
    Magimai-Doss, Mathew
    Collobert, Ronan
    16TH ANNUAL CONFERENCE OF THE INTERNATIONAL SPEECH COMMUNICATION ASSOCIATION (INTERSPEECH 2015), VOLS 1-5, 2015, : 11 - 15
  • [25] CNN-based burned area mapping using radar and optical data
    Belenguer-Plomer, Miguel A.
    Tanase, Mihai A.
    Chuvieco, Emilio
    Bovolo, Francesca
    REMOTE SENSING OF ENVIRONMENT, 2021, 260
  • [26] Lung Nodule Synthesis Using CNN-Based Latent Data Representation
    Oliveira, Dario Augusto Borges
    Viana, Matheus Palhares
    SIMULATION AND SYNTHESIS IN MEDICAL IMAGING, 2018, 11037 : 111 - 118
  • [27] Data Transformation Schemes for CNN-Based Network Traffic Analysis: A Survey
    Krupski, Jacek
    Graniszewski, Waldemar
    Iwanowski, Marcin
    ELECTRONICS, 2021, 10 (16)
  • [28] Original Research Combining CNN-based histologic whole slide image analysis and patient data to improve skin cancer classification
    Hoehn, Julia
    Krieghoff-Henning, Eva
    Jutzi, Tanja B.
    von Kalle, Christof
    Utikal, Jochen S.
    Meier, Friedegund
    Gellrich, Frank F.
    Hobelsberger, Sarah
    Hauschild, Axel
    Schlager, Justin G.
    French, Lars
    Heinzerling, Lucie
    Schlaak, Max
    Ghoreschi, Kamran
    Hilke, Franz J.
    Poch, Gabriela
    Kutzner, Heinz
    Heppt, Markus, V
    Haferkamp, Sebastian
    Sondermann, Wiebke
    Schadendorf, Dirk
    Schilling, Bastian
    Goebeler, Matthias
    Hekler, Achim
    Froehling, Stefan
    Lipka, Daniel B.
    Kather, Jakob N.
    Krahl, Dieter
    Ferrara, Gerardo
    Haggenmueller, Sarah
    Brinker, Titus J.
    EUROPEAN JOURNAL OF CANCER, 2021, 149 : 94 - 101
  • [29] CNN-based InSAR Coherence Classification
    Mukherjee, Subhayan
    Zimmer, Aaron
    Sun, Xinyao
    Ghuman, Parwant
    Cheng, Irene
    2018 IEEE SENSORS, 2018, : 1612 - 1615
  • [30] Multiplication Circuit Architecture for Error- Tolerant CNN-Based Keywords Speech Recognition
    Liu, Bo
    Cai, Hao
    Zhang, Zilong
    Ding, Xiaoling
    Zhang, Renyuan
    Gong, Yu
    Wang, Zhen
    Ge, Wei
    Yang, Jun
    IEEE DESIGN & TEST, 2023, 40 (03) : 26 - 35