Pullback attractors for 2D Navier-Stokes equations on time-varying domains

被引:12
作者
Song, Xiaoya [1 ]
Sun, Chunyou [1 ]
Yang, Lu [1 ]
机构
[1] Lanzhou Univ, Sch Math & Stat, Lanzhou 730000, Gansu, Peoples R China
关键词
2D Navier-Stokes equations; Time-varying domain; Pullback attractor; NONAUTONOMOUS DIFFERENTIAL-EQUATIONS; TOPOLOGICAL DYNAMICS;
D O I
10.1016/j.nonrwa.2018.07.013
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
The aim of this paper is to consider the asymptotic dynamics of 2D Navier-Stokes equations on the time-varying domains with homogeneous Dirichlet boundary conditions. First, we establish the existence and uniqueness of weak solutions, it is assumed that the spatial domains O-t in R-2 are obtained from a bounded base domain O by a C-3-diffeomorphism r(., t); then, some useful equivalent estimates about the vectors on time-varying domains and cylindrical domains are given; and finally, we analyze the long-time behavior of the solutions by proving the existence of a pullback compact attractor. (C) 2018 Elsevier Ltd. All rights reserved.
引用
收藏
页码:437 / 460
页数:24
相关论文
共 36 条
[1]  
AUBIN JP, 1963, CR HEBD ACAD SCI, V256, P5042
[2]   Abstract Schroedinger-type differential equations with variable domain [J].
Bernardi, ML ;
Bonfanti, G ;
Luterotti, F .
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 1997, 211 (01) :84-105
[3]   NAVIER-STOKES EQUATIONS IN NON-CYLINDRICAL DOMAINS [J].
BOCK, DN .
JOURNAL OF DIFFERENTIAL EQUATIONS, 1977, 25 (02) :151-162
[4]  
Caraballo T, 2008, DISCRETE CONT DYN-B, V9, P525
[5]   Pullback attractors for non-autonomous 2D-Navier-Stokes equations in some unbounded domains [J].
Caraballo, T ;
Lukaszewicz, G ;
Real, J .
COMPTES RENDUS MATHEMATIQUE, 2006, 342 (04) :263-268
[6]   Pullback attractors for asymptotically compact non-autonomous dynamical systems [J].
Caraballo, T ;
Lukaszewicz, G ;
Real, J .
NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2006, 64 (03) :484-498
[7]  
Caraballo T, 2003, DYNAM CONT DIS SER A, V10, P491
[8]  
Caraballo T, 2006, ADV NONLINEAR STUD, V6, P411
[9]  
Carvalho A.N., 2013, APPL MATH SCI, V182
[10]   Characterization of non-autonomous attractors of a perturbed infinite-dimensional gradient system [J].
Carvalho, Alexandre N. ;
Langa, Jose A. ;
Robinson, James C. ;
Suarez, Antonio .
JOURNAL OF DIFFERENTIAL EQUATIONS, 2007, 236 (02) :570-603