Intrinsic viscosity of suspensions of electrosterically stabilized nanocrystals of cellulose

被引:21
|
作者
Lenfant, G. [1 ]
Heuzey, M. C. [1 ]
van de Ven, T. G. M. [2 ]
Carreau, P. J. [1 ]
机构
[1] Polytechn Montreal, Dept Chem Engn, CREPEC, Montreal, PQ H3T 1J4, Canada
[2] McGill Univ, Dept Chem, Pulp & Paper Res Ctr, Montreal, PQ H3A 2A7, Canada
关键词
Electrosterically stabilized nanocrystals of cellulose; Intrinsic viscosity; Viscometry; pH; Ionic strength; AQUEOUS SUSPENSIONS; RHEOLOGY; POLYELECTROLYTES; BEHAVIOR; RODLIKE;
D O I
10.1007/s10570-015-0573-7
中图分类号
TB3 [工程材料学]; TS [轻工业、手工业、生活服务业];
学科分类号
0805 ; 080502 ; 0822 ;
摘要
Electrosterically stabilized nanocrystals of cellulose (ENCCs) have emerged recently as new cellulose nanoparticles among common nanocrystals of cellulose (NCCs) and cellulose nanofibers. ENCC has a special structure being composed of a crystal with protruded amorphous chains at each endcaps bearing carboxyl groups. Here, we studied the intrinsic viscosity of aqueous suspensions of ENCCs as a function of pH and ionic strength. Low pH or high ionic strength reduced the ENCCs to rigid rod-like particles while a polyelectrolyte-like behavior was observed for suspensions of ENCCs around pH 7 and at low ionic strength. The pH had a great effect on charges due to both deprotonation of carboxyl groups and counter-ion effect, while the ionic strength only affected the surface charges of the particles. The zeta potential of ENCC suspensions was measured as a function of pH and ionic strength to establish a link between particle charges and the intrinsic viscosity. Finally, the Fedors model was used to compare our data in the case of rigid rod-like body behavior with literature data on NCC suspensions and the model was shown to be unsuitable.
引用
收藏
页码:1109 / 1122
页数:14
相关论文
共 50 条
  • [1] Intrinsic viscosity of suspensions of electrosterically stabilized nanocrystals of cellulose
    G. Lenfant
    M. C. Heuzey
    T. G. M. van de Ven
    P. J. Carreau
    Cellulose, 2015, 22 : 1109 - 1122
  • [2] Intrinsic viscosity of aqueous suspensions of cellulose nanofibrils
    Jowkarderis, Leila
    van de Ven, Theo G. M.
    CELLULOSE, 2014, 21 (04) : 2511 - 2517
  • [3] Intrinsic viscosity of aqueous suspensions of cellulose nanofibrils
    Leila Jowkarderis
    Theo G. M. van de Ven
    Cellulose, 2014, 21 : 2511 - 2517
  • [4] High-concentrated zirconia suspensions stabilized by cellulose nanocrystals
    Danesh, Marziyeh
    Mauran, Damien
    Berry, Richard
    Pawlik, Marek
    Hatzikiriakos, Savvas G.
    CERAMICS INTERNATIONAL, 2022, 48 (14) : 19694 - 19702
  • [5] Surface Charge Influence on the Phase Separation and Viscosity of Cellulose Nanocrystals
    Abitbol, Tiffany
    Kam, Doron
    Levi-Kalisman, Yael
    Gray, Derek G.
    Shoseyov, Oded
    LANGMUIR, 2018, 34 (13) : 3925 - 3933
  • [6] Influence of pH on the stability of alumina suspensions electrosterically stabilized.
    de Morais Sales, Luciano Leal
    de Souza, Antonio Gouveia
    Bastos Soledade, Luis Edmundo
    Garcia dos Santos, Ieda Maria
    Rodrigues Neto, Joao Batista
    Longo, Elson
    Paskocimas, Carlos Alberto
    QUIMICA NOVA, 2007, 30 (01): : 70 - 74
  • [7] Suspensions and hydrogels of cellulose nanocrystals (CNCs): characterization using microscopy and rheology
    Moud, Aref Abbasi
    Kamkar, Milad
    Sanati-Nezhad, Amir
    Hejazi, Seyed Hossein
    CELLULOSE, 2022, 29 (07) : 3621 - 3653
  • [8] Viscosity measurements of dilute aqueous suspensions of cellulose nanocrystals using a rolling ball viscometer
    Gonzalez-Labrada, Erick
    Gray, Derek G.
    CELLULOSE, 2012, 19 (05) : 1557 - 1565
  • [9] Hydrophobization of Cellulose Nanocrystals for Aqueous Colloidal Suspensions and Gels
    Nigmatullin, Rinat
    Johns, Marcus
    Munoz-Garcia, Juan C.
    Gabrielli, Valeria
    Schmitt, Julien
    Angulo, Jesus
    Khimyak, Yaroslav Z.
    Scott, Janet L.
    Edler, Karen J.
    Eichhorn, Stephen J.
    BIOMACROMOLECULES, 2020, 21 (05) : 1812 - 1823
  • [10] Pipe Flow of Suspensions of Cellulose Nanocrystals
    Kinra, Saumay
    Pal, Rajinder
    FLUIDS, 2023, 8 (10)