Molecular rationale for SARS-CoV-2 spike circulating mutations able to escape bamlanivimab and etesevimab monoclonal antibodies

被引:33
作者
Laurini, Erik [1 ]
Marson, Domenico [1 ]
Aulic, Suzana [1 ]
Fermeglia, Alice [1 ]
Pricl, Sabrina [1 ,2 ]
机构
[1] Univ Trieste, DEA, Mol Biol & Nanotechnol Lab MoIBNL UniTS, I-34127 Trieste, Italy
[2] Univ Lodz, Fac Biol & Environm Protect, Dept Gen Biophys, PL-90136 Lodz, Poland
关键词
RECEPTOR-BINDING DOMAIN; IN-SILICO; DYNAMICS; MUTAGENESIS; PREDICTION; SYSTEM; ENTRY;
D O I
10.1038/s41598-021-99827-3
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
The purpose of this work is to provide an in silico molecular rationale of the role eventually played by currently circulating mutations in the receptor binding domain of the SARS-CoV-2 spike protein (S-RBDCoV-2) in evading the immune surveillance effects elicited by the two Eli Lilly LY-CoV555/bamlanivimab and LY-CoV016/etesevimab monoclonal antibodies. The main findings from this study show that, compared to the wild-type SARS-CoV-2 spike protein, mutations E484A/G/K/Q/R/V, Q493K/L/R, S494A/P/R, L452R and F490S are predicted to be markedly resistant to neutralization by LY-CoV555, while mutations K417E/N/T, D420A/G/N, N460I/K/S/T, T415P, and Y489C/S are predicted to confer LY-CoV016 escaping advantage to the viral protein. A challenge of our global in silico results against relevant experimental data resulted in an overall 90% agreement. Thus, the results presented provide a molecular-based rationale for all relative experimental findings, constitute a fast and reliable tool for identifying and prioritizing all present and newly reported circulating spike SARS-CoV-2 variants with respect to antibody neutralization, and yield substantial structural information for the development of next-generation vaccines and monoclonal antibodies more resilient to viral evolution.
引用
收藏
页数:20
相关论文
共 105 条
[21]   Antibody evasion by the P.1 strain of SARS-CoV-2 [J].
Dejnirattisai, Wanwisa ;
Zhou, Daming ;
Supasa, Piyada ;
Liu, Chang ;
Mentzer, Alexander J. ;
Ginn, Helen M. ;
Zhao, Yuguang ;
Duyvesteyn, Helen M. E. ;
Tuekprakhon, Aekkachai ;
Nutalai, Rungtiwa ;
Wang, Beibei ;
Lopez-Camacho, Cesar ;
Slon-Campos, Jose ;
Walter, Thomas S. ;
Skelly, Donal ;
Clemens, Sue Ann Costa ;
Naveca, Felipe Gomes ;
Nascimento, Valdinete ;
Nascimento, Fernanda ;
da Costa, Cristiano Fernandes ;
Resende, Paola Cristina ;
Pauvolid-Correa, Alex ;
Siqueira, Marilda M. ;
Dold, Christina ;
Levin, Robert ;
Dong, Tao ;
Pollard, Andrew J. ;
Knight, Julian C. ;
Crook, Derrick ;
Lambe, Teresa ;
Clutterbuck, Elizabeth ;
Bibi, Sagida ;
Flaxman, Amy ;
Bittaye, Mustapha ;
Belij-Rammerstorfer, Sandra ;
Gilbert, Sarah C. ;
Carroll, Miles W. ;
Klenerman, Paul ;
Barnes, Eleanor ;
Dunachie, Susanna J. ;
Paterson, Neil G. ;
Williams, Mark A. ;
Hall, David R. ;
Hulswit, Ruben J. G. ;
Bowden, Thomas A. ;
Fry, Elizabeth E. ;
Mongkolsapaya, Juthathip ;
Ren, Jingshan ;
Stuart, David, I ;
Screaton, Gavin R. .
CELL, 2021, 184 (11) :2939-+
[22]   Transmission, infectivity, and neutralization of a spike L452R SARS-CoV-2 variant [J].
Deng, Xianding ;
Garcia-Knight, Miguel A. ;
Khalid, Mir M. ;
Servellita, Venice ;
Wang, Candace ;
Morris, Mary Kate ;
Sotomayor-Gonzalez, Alicia ;
Glasner, Dustin R. ;
Reyes, Kevin R. ;
Gliwa, Amelia S. ;
Reddy, Nikitha P. ;
San Martin, Claudia Sanchez ;
Federman, Scot ;
Cheng, Jing ;
Balcerek, Joanna ;
Taylor, Jordan ;
Streithorst, Jessica A. ;
Miller, Steve ;
Sreekumar, Bharath ;
Chen, Pei-Yi ;
Schulze-Gahmen, Ursula ;
Taha, Taha Y. ;
Hayashi, Jennifer M. ;
Simoneau, Camille R. ;
Kumar, G. Renuka ;
McMahon, Sarah ;
Lidsky, Peter, V ;
Xiao, Yinghong ;
Hemarajata, Peera ;
Green, Nicole M. ;
Espinosa, Alex ;
Kath, Chantha ;
Haw, Monica ;
Bell, John ;
Hacker, Jill K. ;
Hanson, Carl ;
Wadford, Debra A. ;
Anaya, Carlos ;
Ferguson, Donna ;
Frankino, Phillip A. ;
Shivram, Haridha ;
Lareau, Liana F. ;
Wyman, Stacia K. ;
Ott, Melanie ;
Andino, Raul ;
Chiu, Charles Y. .
CELL, 2021, 184 (13) :3426-+
[23]   Evidence for host-dependent RNA editing in the transcriptome of SARS-CoV-2 [J].
Di Giorgio, Salvatore ;
Martignano, Filippo ;
Torcia, Maria Gabriella ;
Mattiuz, Giorgio ;
Conticello, Silvestro G. .
SCIENCE ADVANCES, 2020, 6 (25)
[24]  
Diamond Michael, 2021, Res Sq, DOI 10.21203/rs.3.rs-228079/v1
[25]   Interaction Entropy: A New Paradigm for Highly Efficient and Reliable Computation of Protein-Ligand Binding Free Energy [J].
Duan, Lili ;
Liu, Xiao ;
Zhang, John Z. H. .
JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 2016, 138 (17) :5722-5728
[26]   Neutralising antibody escape of SARS-CoV-2 spike protein: Risk assessment for antibody-based Covid-19 therapeutics and vaccines [J].
Focosi, Daniele ;
Maggi, Fabrizio .
REVIEWS IN MEDICAL VIROLOGY, 2021, 31 (06)
[27]   COVID-19 vaccines: where we stand and challenges ahead [J].
Forni, Guido ;
Mantovani, Alberto .
CELL DEATH AND DIFFERENTIATION, 2021, 28 (02) :626-639
[28]   One-shot identification of SARS-CoV-2 S RBD escape mutants using yeast screening [J].
Francino-Urdaniz, Irene M. ;
Steiner, Paul J. ;
Kirby, Monica B. ;
Zhao, Fangzhu ;
Haas, Cyrus M. ;
Barman, Shawn ;
Rhodes, Emily R. ;
Leonard, Alison C. ;
Peng, Linghang ;
Sprenger, Kayla G. ;
Jardine, Joseph G. ;
Whitehead, Timothy A. .
CELL REPORTS, 2021, 36 (09)
[29]   Priming of SARS-CoV-2 S protein by several membrane-bound serine proteinases could explain enhanced viral infectivity and systemic COVID-19 infection [J].
Fuentes-Prior, Pablo .
JOURNAL OF BIOLOGICAL CHEMISTRY, 2021, 296
[30]  
Garcia-Beltran WF, 2021, CELL, V184, P2372, DOI [10.1016/j.cell.2021.03.013, 10.1101/2021.02.14.21251704, 10.1016/j.cell.2021.04.006]