High-Temperature Oxidation Behavior of AlTiNiCuCox High-Entropy Alloys

被引:2
|
作者
Wang, Junfeng [1 ,2 ]
He, Qiaobai [1 ]
Liu, Guanqi [1 ]
Zhang, Qi [3 ]
Liu, Guotan [1 ]
Huang, Zhihao [1 ]
Zhu, Xiaoshuo [4 ]
Fu, Yudong [1 ]
机构
[1] Harbin Engn Univ, Dept Mat Sci & Chem Engn, Harbin 150001, Peoples R China
[2] Shanghai Jiao Tong Univ, Sch Mat Sci & Engn, Shanghai Key Lab Adv High Temp Mat, Precis Forming & State Key Lab Met Matrix Composi, Shanghai 200240, Peoples R China
[3] Chengdu Aircraft Ind Grp Co Ltd, Chengdu 610072, Peoples R China
[4] Xinjiang Univ, Dept Mech Engn, Urumqi 830046, Peoples R China
关键词
high-entropy alloy (HEA); high-temperature oxidation resistance; oxidation kinetics; microstructure morphology; phase composition and oxidation mechanism; MICROSTRUCTURAL CHARACTERIZATION; MECHANICAL-PROPERTIES; RESISTANCE; TI; PHASE;
D O I
10.3390/ma14185319
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
In this study, the high-temperature oxidation behavior of a series of AlTiNiCuCox high-entropy alloys (HEAs) was explored. The AlTiNiCuCox (x = 0.5, 0.75, 1.0, 1.25, 1.5) series HEAs were prepared using a vacuum induction melting furnace, in which three kinds of AlTiNiCuCox (x = 0.5, 1.0, 1.5) alloys with different Co contents were oxidized at 800 degrees C for 100 h, and their oxidation kinetic curves were determined. The microstructure, morphology, structure, and phase composition of the oxide film surface and cross-sectional layers of AlTiNiCuCox series HEAs were analyzed using scanning electron microscopy (SEM), energy-dispersive spectrometry (EDS), and X-ray diffraction (XRD). The influence of Co content on the high-temperature oxidation resistance of the HEAs was discussed, and the oxidation mechanism was summarized. The results indicate that, at 800 degrees C, the AlTiNiCuCox (x = 0.5, 1.0, 1.5) series HEAs had dense oxide films and certain high-temperature oxidation resistance. With increasing Co content, the high-temperature oxidation resistance of the alloys also increased. With increasing time at high temperature, there was a significant increase in the contents of oxide species and Ti on the oxide film surface. In the process of high-temperature oxidation of AlTiNiCuCox series HEAs, the interfacial reaction, in which metal elements and oxygen in the alloy form ions through direct contact reaction, initially dominated, then the diffusion process gradually became the dominant oxidation factor as ions diffused and were transported in the oxide film.
引用
收藏
页数:12
相关论文
共 50 条
  • [31] A perspective on investigating transition metal high-entropy alloys for high-temperature applications
    Li, Meifeng
    Zhang, Hao
    Zeng, Yimin
    Liu, Jing
    ACTA MATERIALIA, 2022, 240
  • [32] A strategy of designing high-entropy alloys with high-temperature shape memory effect
    Lee, Je In
    Tsuchiya, Koichi
    Tasaki, Wataru
    Oh, Hyun Seok
    Sawaguchi, Takahiro
    Murakami, Hideyuki
    Hiroto, Takanobu
    Matsushita, Yoshitaka
    Park, Eun Soo
    SCIENTIFIC REPORTS, 2019, 9 (1)
  • [33] Nanocrystalline High-Entropy Alloys: A New Paradigm in High-Temperature Strength and Stability
    Zou, Yu
    Wheeler, Jeffrey M.
    Ma, Huan
    Okle, Philipp
    Spolenak, Ralph
    NANO LETTERS, 2017, 17 (03) : 1569 - 1574
  • [34] A combinatorial approach for the synthesis and analysis of AlxCryMozNbTiZr high-entropy alloys: Oxidation behavior
    Waseem, Owais Ahmed
    Auyeskhan, Ulanbek
    Lee, Hyuck Mo
    Ryu, Ho Jin
    JOURNAL OF MATERIALS RESEARCH, 2018, 33 (19) : 3226 - 3234
  • [35] Towards high-entropy alloys with high-temperature corrosion resistance and structural stability
    Li, Meifeng
    Henein, Hani
    Zhou, Chungen
    Liu, Jing
    JOURNAL OF MATERIALS SCIENCE & TECHNOLOGY, 2024, 174 : 133 - 144
  • [36] The microstrcture and high-temperature oxidation resistance of tungsten carbide with high entropy alloys as binder
    Chang Fa
    Zhang Jungui
    Lu Shijia
    Guo Keke
    Dai Pinqiang
    Liu Chao
    Zhang Xiaofeng
    JOURNAL OF THE CERAMIC SOCIETY OF JAPAN, 2022, 130 (07) : 477 - 486
  • [37] Dual-phase high-entropy alloys for high-temperature structural applications
    Lim, Ka Ram
    Lee, Kwang Seok
    Lee, Jun Seo
    Kim, Jin Yeon
    Chang, Hye Jung
    Na, Young Sang
    JOURNAL OF ALLOYS AND COMPOUNDS, 2017, 728 : 1235 - 1238
  • [38] Effect of laser remelting on high-temperature oxidation resistance of AlCoCrFeNi high-entropy alloy coating
    Dong, Tianshun
    Lu, Pengwei
    Ma, Qingliang
    Li, Guolu
    Liu, Qi
    Fu, Binguo
    Li, Jingkun
    SURFACE & COATINGS TECHNOLOGY, 2023, 466
  • [39] Mechanical behavior of high-entropy alloys
    Li, Weidong
    Xie, Di
    Li, Dongyue
    Zhang, Yong
    Gao, Yanfei
    Liaw, Peter K.
    PROGRESS IN MATERIALS SCIENCE, 2021, 118
  • [40] High-temperature oxidation behaviors and mechanisms in newly designed L12-strengthened high-entropy alloys
    Hou, Jinxiong
    Tan, Yi
    Liu, Shaofei
    Zhang, Jianyang
    Xiao, Weicheng
    Kong, Haojie
    Li, Qian
    Cao, Boxuan
    Luan, Junhua
    Zhao, Yilu
    Kai, Jijung
    Yang, Tao
    CORROSION SCIENCE, 2022, 208