Critical values of L-functions for GL3 x GL1 and symmetric square L-functions for GL2 over a CM field

被引:4
作者
Sachdeva, Gunja [1 ]
机构
[1] Tata Inst Fundamental Res, Sch Math, Dr Homi Bhabha Rd, Colaba Mumbai 40005, India
关键词
Cohomological automorphic representation; CM field; Rankin Selberg L-functions; Critical values; Algebraicity result; EISENSTEIN COHOMOLOGY;
D O I
10.1016/j.jnt.2019.10.013
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In article [14], an algebraicity result, an extension of Mahnkopf's result [10], for the critical values of L-functions for GL(3) x GL(1) over a totally real number field was proved. In this paper, we again prove an extension of Mahnkopf [101, for all the critical values of certain Rankin Selberg L-functions attached to a pair of algebraic automorphic representations on GL(3) x GL(1) over a CM field, having cohomology with a general coefficient system. (C) 2019 Elsevier Inc. All rights reserved.
引用
收藏
页码:43 / 74
页数:32
相关论文
共 18 条
[1]  
[Anonymous], 2017, L FUNCTIONS AUTOMORP
[2]   ON THE CRITICAL-VALUES OF HECKE L-SERIES [J].
BLASIUS, D .
ANNALS OF MATHEMATICS, 1986, 124 (01) :23-63
[3]  
Blasius D, 1997, PAC J MATH, P53
[4]  
Deligne P., 1979, Proc. Symp. Pure Math., V33, P313
[5]  
GELBART S, 1978, ANN SCI ECOLE NORM S, V11, P471
[6]  
Geroldinger A, 2015, RAMANUJAN J, V38, P641, DOI 10.1007/s11139-015-9673-0
[7]   EISENSTEIN COHOMOLOGY OF ARITHMETIC GROUPS - THE CASE GL2 [J].
HARDER, G .
INVENTIONES MATHEMATICAE, 1987, 89 (01) :37-118
[8]   NON-VANISHING THEOREM FOR ZETA FUNCTIONS OF GLN [J].
JACQUET, H ;
SHALIKA, JA .
INVENTIONES MATHEMATICAE, 1976, 38 (01) :1-16
[9]  
Knapp A., 1994, P S PURE MATH, P393
[10]  
Lin J., 2015, Special values of automorphic -functions for over CM fields, factorization and functoriality of arithmetic automorphic periods'