On applications of bipartite graph associated with algebraic structures

被引:7
作者
Zhang, Xiujun [1 ]
Nadeem, Muhammed [2 ]
Ahmad, Sarfraz [3 ]
Siddiqui, Muhammad Kamran [3 ]
机构
[1] Chengdu Univ, Inst Higher Educ Sichuan Prov, Key Lab Pattern Recognit & Intelligent Informat P, Chengdu 610106, Peoples R China
[2] Sharif Coll Engn & Technol, Lahore 54000, Pakistan
[3] Comsats Univ Islamabad, Dept Math, Lahore Campus, Islamabad, Pakistan
来源
OPEN MATHEMATICS | 2020年 / 18卷
关键词
Wilson loop; bipartite graph; edge labeling; nucleus; PROTEIN INTERACTION MAP; MAXIMUM ABC INDEX; LOOPS;
D O I
10.1515/math-2020-0003
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
The latest developments in algebra and graph theory allow us to ask a natural question, what is the application in real world of this graph associated with some mathematical system? Groups can be used to construct new non-associative algebraic structures, loops. Graph theory plays an important role in various fields through edge labeling. In this paper, we shall discuss some applications of bipartite graphs, related with Latin squares of Wilson loops, such as metabolic pathways, chemical reaction networks, routing and wavelength assignment problem, missile guidance, astronomy and x-ray crystallography.
引用
收藏
页码:57 / 66
页数:10
相关论文
共 33 条
  • [31] RNA-Seq: a revolutionary tool for transcriptomics
    Wang, Zhong
    Gerstein, Mark
    Snyder, Michael
    [J]. NATURE REVIEWS GENETICS, 2009, 10 (01) : 57 - 63
  • [32] A CLASS OF LOOPS WITH ISOTOPY-ISOMORPHY PROPERTY
    WILSON, EL
    [J]. CANADIAN JOURNAL OF MATHEMATICS, 1966, 18 (03): : 589 - &
  • [33] Yu Donghyeon, 2013, Genomics & Informatics, V11, P200, DOI 10.5808/GI.2013.11.4.200