An artificial small perturbation parameter and nonlinear plate vibrations

被引:22
作者
Andrianov, IV
Danishevs'kyy, VV
Awrejcewicz, J
机构
[1] Tech Univ Lodz, Dept Automat & Biomech, PL-90924 Lodz, Poland
[2] Rhein Westfal TH Aachen, Inst Allgemeine Mech, D-52056 Aachen, Germany
关键词
D O I
10.1016/j.jsv.2004.04.041
中图分类号
O42 [声学];
学科分类号
070206 ; 082403 ;
摘要
Nonlinear natural in-plane vibrations of a rectangular plate are studied using three small parameters. Firstly, the nonlinearity is assumed to be small. Then, a solution to a problem of the zeroth order (linear) is sought in the form of an asymptotic series with respect to the ratio of stiffness characteristics. For internal resonance, vibration modes are coupled via an infinite system of nonlinear algebraic equations, and the artificial small parameter approach is proposed to solve the obtained system. Analytical formulas for the amplitude-frequency characteristics are derived and the solutions are compared with numerical results. (c) 2004 Elsevier Ltd. All rights reserved.
引用
收藏
页码:561 / 571
页数:11
相关论文
共 30 条
  • [1] Andrianov I. V., 1995, TECHNISCHE MECH, V15, P53
  • [2] Asymptotic approach for non-linear periodical vibrations of continuous structures
    Andrianov, IV
    Danishevskyy, VV
    [J]. JOURNAL OF SOUND AND VIBRATION, 2002, 249 (03) : 465 - 481
  • [3] [Anonymous], APPL MECH REV
  • [4] [Anonymous], STRESS STATE ANISOTR
  • [5] [Anonymous], 1997, Comm. Nonlinear Sci. Numer. Simul.
  • [6] AWREJCEWICZ J, 1998, ASYMPTO0TIC APPROACH
  • [7] BALABUKH LI, 1969, FDN STRUCTURAL MECH
  • [8] BAUER SM, 1993, CRM P LECT NOTES, V3, P3
  • [9] LOGARITHMIC APPROXIMATIONS TO POLYNOMIAL LAGRANGEANS
    BENDER, CM
    MILTON, KA
    MOSHE, M
    PINSKY, SS
    SIMMONS, LM
    [J]. PHYSICAL REVIEW LETTERS, 1987, 58 (25) : 2615 - 2618
  • [10] NUMERICAL FLUID-DYNAMICS
    BIRKHOFF, G
    [J]. SIAM REVIEW, 1983, 25 (01) : 1 - 34