Painleve I double scaling limit in the cubic random matrix model

被引:16
作者
Bleher, Pavel [1 ]
Deano, Alfredo [2 ]
机构
[1] Indiana Univ Purdue Univ, Dept Math Sci, 402 N Blackford St, Indianapolis, IN 46202 USA
[2] Univ Kent, Sch Math Stat & Actuarial Sci, Canterbury CT2 7NF, Kent, England
基金
美国国家科学基金会;
关键词
Random matrices; asymptotic representation in the complex domain; Riemann-Hilbert problems; topological expansion; partition function; double scaling limit; Painleve I equation; ORTHOGONAL POLYNOMIALS; PARTITION-FUNCTION; ASYMPTOTICS; RESPECT;
D O I
10.1142/S2010326316500040
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
We obtain the double scaling asymptotic behavior of the recurrence coefficients and the partition function at the critical point of the NxN Hermitian random matrix model with cubic potential. We prove that the recurrence coefficients admit an asymptotic expansion in powers of N-2/5, and in the leading order the asymptotic behavior of the recurrence coefficients is given by a Boutroux tronquee solution to the Painleve I equation. We also obtain the double scaling limit of the partition function, and we prove that the poles of the tronquee solution are limits of zeros of the partition function. The tools used include the Riemann-Hilbert approach and the Deift-Zhou nonlinear steepest descent method for the corresponding family of complex orthogonal polynomials and their recurrence coefficients, together with the Toda equation in the parameter space.
引用
收藏
页数:58
相关论文
共 50 条
[41]   Limit theorems for the alloy-type random energy model [J].
Molchanov, Stanislav ;
Panov, Vladimir .
STOCHASTICS-AN INTERNATIONAL JOURNAL OF PROBABILITY AND STOCHASTIC PROCESSES, 2019, 91 (05) :754-772
[42]   On the Distribution of the Limit of Products of I.I.D. 2×2 Random Stochastic Matrices [J].
A. Mukherjea ;
A. Nakassis ;
J. S. Ratti .
Journal of Theoretical Probability, 1999, 12 :571-583
[43]   Global and local scaling limits for the β=2 Stieltjes-Wigert random matrix ensemble [J].
Forrester, Peter J. .
RANDOM MATRICES-THEORY AND APPLICATIONS, 2022, 11 (02)
[44]   Central limit theorem for traces of large random symmetric matrices with independent matrix elements [J].
Sinai Ya. ;
Soshnikov A. .
Boletim da Sociedade Brasileira de Matemática - Bulletin/Brazilian Mathematical Society, 1998, 29 (1) :1-24
[45]   A random matrix model of communication via antenna Arrays [J].
Müller, RR .
IEEE TRANSACTIONS ON INFORMATION THEORY, 2002, 48 (09) :2495-2506
[46]   Random Matrix Model for Nakagami-Hoyt Fading [J].
Kumar, Santosh ;
Pandey, Akhilesh .
IEEE TRANSACTIONS ON INFORMATION THEORY, 2010, 56 (05) :2360-2372
[47]   Phase transitions of large-N two-dimensional Yang–Mills and generalized Yang–Mills theories in the double scaling limit [J].
M. Alimohammadi ;
M. Khorrami .
The European Physical Journal C - Particles and Fields, 2006, 47 :507-512
[48]   Scaled Limit and Rate of Convergence for the Largest Eigenvalue from the Generalized Cauchy Random Matrix Ensemble [J].
Joseph Najnudel ;
Ashkan Nikeghbali ;
Felix Rubin .
Journal of Statistical Physics, 2009, 137
[49]   Random volumes under a general matrix-variate model [J].
Mathai, A. M. .
LINEAR ALGEBRA AND ITS APPLICATIONS, 2007, 425 (01) :162-170
[50]   A random matrix model with non-pairwise contracted indices [J].
Lionni, Luca ;
Sasakura, Naoki .
PROGRESS OF THEORETICAL AND EXPERIMENTAL PHYSICS, 2019, 2019 (07)